野外多光照图像数据集

Lukas Murmann, Michaël Gharbi, M. Aittala, F. Durand
{"title":"野外多光照图像数据集","authors":"Lukas Murmann, Michaël Gharbi, M. Aittala, F. Durand","doi":"10.1109/ICCV.2019.00418","DOIUrl":null,"url":null,"abstract":"Collections of images under a single, uncontrolled illumination have enabled the rapid advancement of core computer vision tasks like classification, detection, and segmentation. But even with modern learning techniques, many inverse problems involving lighting and material understanding remain too severely ill-posed to be solved with single-illumination datasets. The data simply does not contain the necessary supervisory signals. Multi-illumination datasets are notoriously hard to capture, so the data is typically collected at small scale, in controlled environments, either using multiple light sources, or robotic gantries. This leads to image collections that are not representative of the variety and complexity of real world scenes. We introduce a new multi-illumination dataset of more than 1000 real scenes, each captured in high dynamic range and high resolution, under 25 lighting conditions. We demonstrate the richness of this dataset by training state-of-the-art models for three challenging applications: single-image illumination estimation, image relighting, and mixed-illuminant white balance.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"108 1","pages":"4079-4088"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A Dataset of Multi-Illumination Images in the Wild\",\"authors\":\"Lukas Murmann, Michaël Gharbi, M. Aittala, F. Durand\",\"doi\":\"10.1109/ICCV.2019.00418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collections of images under a single, uncontrolled illumination have enabled the rapid advancement of core computer vision tasks like classification, detection, and segmentation. But even with modern learning techniques, many inverse problems involving lighting and material understanding remain too severely ill-posed to be solved with single-illumination datasets. The data simply does not contain the necessary supervisory signals. Multi-illumination datasets are notoriously hard to capture, so the data is typically collected at small scale, in controlled environments, either using multiple light sources, or robotic gantries. This leads to image collections that are not representative of the variety and complexity of real world scenes. We introduce a new multi-illumination dataset of more than 1000 real scenes, each captured in high dynamic range and high resolution, under 25 lighting conditions. We demonstrate the richness of this dataset by training state-of-the-art models for three challenging applications: single-image illumination estimation, image relighting, and mixed-illuminant white balance.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"108 1\",\"pages\":\"4079-4088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

在单一的,不受控制的照明下的图像集合使得核心计算机视觉任务如分类,检测和分割的快速发展成为可能。但是,即使使用现代学习技术,许多涉及照明和材料理解的逆问题仍然过于严重不适定,无法用单照明数据集来解决。这些数据根本不包含必要的监控信号。众所周知,多照明数据集很难捕获,因此数据通常是在小规模的、受控的环境中收集的,要么使用多个光源,要么使用机器人龙门。这导致图像集合不能代表真实世界场景的多样性和复杂性。我们引入了一个新的多照明数据集,其中包含超过1000个真实场景,每个场景在25种照明条件下以高动态范围和高分辨率捕获。我们通过为三个具有挑战性的应用训练最先进的模型来展示该数据集的丰富性:单图像照明估计,图像重照明和混合光源白平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dataset of Multi-Illumination Images in the Wild
Collections of images under a single, uncontrolled illumination have enabled the rapid advancement of core computer vision tasks like classification, detection, and segmentation. But even with modern learning techniques, many inverse problems involving lighting and material understanding remain too severely ill-posed to be solved with single-illumination datasets. The data simply does not contain the necessary supervisory signals. Multi-illumination datasets are notoriously hard to capture, so the data is typically collected at small scale, in controlled environments, either using multiple light sources, or robotic gantries. This leads to image collections that are not representative of the variety and complexity of real world scenes. We introduce a new multi-illumination dataset of more than 1000 real scenes, each captured in high dynamic range and high resolution, under 25 lighting conditions. We demonstrate the richness of this dataset by training state-of-the-art models for three challenging applications: single-image illumination estimation, image relighting, and mixed-illuminant white balance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信