Haoran Sun, Z. Ding, Haoran Sun, Shuang Li, E. Lavernia, Wei Liu
{"title":"能量势垒和剪切方向对面心立方金属孪晶的协同效应","authors":"Haoran Sun, Z. Ding, Haoran Sun, Shuang Li, E. Lavernia, Wei Liu","doi":"10.2139/ssrn.3427531","DOIUrl":null,"url":null,"abstract":"Abstract The formation of twins in face-centered cubic (FCC) crystals is influenced by both the energy barriers and associated shear directions. In this study, we formulate and implement a theoretical framework to study 15 pure FCC metals in an effort to propose a twinning propensity descriptor to predict the tendency for twin formation in FCC metals under different shear directions. Our calculations demonstrate that deformation twins form readily in: Al, Ir, Ni, Rh, Co, Au, Cu, Yb, Ag, Sr, and Ca, but have difficulty forming in: Ce, Pt, Pb, and Pd, and this trend is consistent with available experiment results. Using this descriptor, we further predict that in the case of Cu-Al alloys the highest twinning propensity is achieved at ~6 at. % Al concentration, which is also consistent with experimental observations. These results provide insight into the nature of deformation twins, and furthermore help establish the framework necessary to design FCC metals and alloys with a high tendency for twin formation.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"54 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Synergistic Effects of Energy Barriers and Shear Directions on Twinning in Face Centered Cubic Metals\",\"authors\":\"Haoran Sun, Z. Ding, Haoran Sun, Shuang Li, E. Lavernia, Wei Liu\",\"doi\":\"10.2139/ssrn.3427531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The formation of twins in face-centered cubic (FCC) crystals is influenced by both the energy barriers and associated shear directions. In this study, we formulate and implement a theoretical framework to study 15 pure FCC metals in an effort to propose a twinning propensity descriptor to predict the tendency for twin formation in FCC metals under different shear directions. Our calculations demonstrate that deformation twins form readily in: Al, Ir, Ni, Rh, Co, Au, Cu, Yb, Ag, Sr, and Ca, but have difficulty forming in: Ce, Pt, Pb, and Pd, and this trend is consistent with available experiment results. Using this descriptor, we further predict that in the case of Cu-Al alloys the highest twinning propensity is achieved at ~6 at. % Al concentration, which is also consistent with experimental observations. These results provide insight into the nature of deformation twins, and furthermore help establish the framework necessary to design FCC metals and alloys with a high tendency for twin formation.\",\"PeriodicalId\":7755,\"journal\":{\"name\":\"AMI: Acta Materialia\",\"volume\":\"54 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Acta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3427531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3427531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Synergistic Effects of Energy Barriers and Shear Directions on Twinning in Face Centered Cubic Metals
Abstract The formation of twins in face-centered cubic (FCC) crystals is influenced by both the energy barriers and associated shear directions. In this study, we formulate and implement a theoretical framework to study 15 pure FCC metals in an effort to propose a twinning propensity descriptor to predict the tendency for twin formation in FCC metals under different shear directions. Our calculations demonstrate that deformation twins form readily in: Al, Ir, Ni, Rh, Co, Au, Cu, Yb, Ag, Sr, and Ca, but have difficulty forming in: Ce, Pt, Pb, and Pd, and this trend is consistent with available experiment results. Using this descriptor, we further predict that in the case of Cu-Al alloys the highest twinning propensity is achieved at ~6 at. % Al concentration, which is also consistent with experimental observations. These results provide insight into the nature of deformation twins, and furthermore help establish the framework necessary to design FCC metals and alloys with a high tendency for twin formation.