跨租户共享可检索性证明

Frederik Armknecht, J. Bohli, D. Froelicher, Ghassan O. Karame
{"title":"跨租户共享可检索性证明","authors":"Frederik Armknecht, J. Bohli, D. Froelicher, Ghassan O. Karame","doi":"10.1145/3052973.3052997","DOIUrl":null,"url":null,"abstract":"Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret material) that his files can be retrieved in their entirety. However, POR schemes completely ignore storage-efficiency concepts, such as multi-tenancy and data deduplication, which are being widely utilized by existing cloud storage providers. Namely, in deduplicated storage systems, existing POR schemes would incur an additional overhead for storing tenants' tags which grows linearly with the number of users deduplicating the same file. This overhead clearly reduces the (economic) incentives of cloud providers to integrate existing POR/PDP solutions in their offerings. In this paper, we propose a novel storage-efficient POR, dubbed SPORT, which transparently supports multi-tenancy and data deduplication. More specifically, SPORT enables tenants to securely share the same POR tags in order to verify the integrity of their deduplicated files. By doing so, SPORT considerably reduces the storage overhead borne by cloud providers when storing the tags of different tenants deduplicating the same content. We show that SPORT resists against malicious tenants/cloud providers (and against collusion among a subset of the tenants and the cloud). Finally, we implement a prototype based on SPORT, and evaluate its performance in a realistic cloud setting. Our evaluation results show that our proposal incurs tolerable computational overhead on the tenants and the cloud provider.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sharing Proofs of Retrievability across Tenants\",\"authors\":\"Frederik Armknecht, J. Bohli, D. Froelicher, Ghassan O. Karame\",\"doi\":\"10.1145/3052973.3052997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret material) that his files can be retrieved in their entirety. However, POR schemes completely ignore storage-efficiency concepts, such as multi-tenancy and data deduplication, which are being widely utilized by existing cloud storage providers. Namely, in deduplicated storage systems, existing POR schemes would incur an additional overhead for storing tenants' tags which grows linearly with the number of users deduplicating the same file. This overhead clearly reduces the (economic) incentives of cloud providers to integrate existing POR/PDP solutions in their offerings. In this paper, we propose a novel storage-efficient POR, dubbed SPORT, which transparently supports multi-tenancy and data deduplication. More specifically, SPORT enables tenants to securely share the same POR tags in order to verify the integrity of their deduplicated files. By doing so, SPORT considerably reduces the storage overhead borne by cloud providers when storing the tags of different tenants deduplicating the same content. We show that SPORT resists against malicious tenants/cloud providers (and against collusion among a subset of the tenants and the cloud). Finally, we implement a prototype based on SPORT, and evaluate its performance in a realistic cloud setting. Our evaluation results show that our proposal incurs tolerable computational overhead on the tenants and the cloud provider.\",\"PeriodicalId\":20540,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3052973.3052997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3052997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

可检索性证明(POR)是一种加密证明,它为单个租户(使用其秘密材料创建标记的人)提供保证,使其文件可以完整地检索。但是,POR方案完全忽略了存储效率的概念,例如多租户和重复数据删除,这些概念正在被现有的云存储提供商广泛使用。也就是说,在重复数据删除存储系统中,现有的POR方案会导致存储租户标记的额外开销,这种开销会随着重复数据删除同一文件的用户数量的增加而线性增长。这种开销显然降低了云提供商在其产品中集成现有POR/PDP解决方案的(经济)动机。在本文中,我们提出了一种新的存储效率高的POR,称为SPORT,它透明地支持多租户和重复数据删除。更具体地说,SPORT使租户能够安全地共享相同的POR标记,以便验证其重复数据删除文件的完整性。通过这样做,SPORT在存储重复数据删除相同内容的不同租户的标记时,大大减少了云提供商承担的存储开销。我们展示了SPORT可以抵抗恶意租户/云提供商(以及租户和云的子集之间的勾结)。最后,我们实现了一个基于SPORT的原型,并在一个真实的云环境中评估了它的性能。我们的评估结果表明,我们的建议给租户和云提供商带来了可容忍的计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharing Proofs of Retrievability across Tenants
Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret material) that his files can be retrieved in their entirety. However, POR schemes completely ignore storage-efficiency concepts, such as multi-tenancy and data deduplication, which are being widely utilized by existing cloud storage providers. Namely, in deduplicated storage systems, existing POR schemes would incur an additional overhead for storing tenants' tags which grows linearly with the number of users deduplicating the same file. This overhead clearly reduces the (economic) incentives of cloud providers to integrate existing POR/PDP solutions in their offerings. In this paper, we propose a novel storage-efficient POR, dubbed SPORT, which transparently supports multi-tenancy and data deduplication. More specifically, SPORT enables tenants to securely share the same POR tags in order to verify the integrity of their deduplicated files. By doing so, SPORT considerably reduces the storage overhead borne by cloud providers when storing the tags of different tenants deduplicating the same content. We show that SPORT resists against malicious tenants/cloud providers (and against collusion among a subset of the tenants and the cloud). Finally, we implement a prototype based on SPORT, and evaluate its performance in a realistic cloud setting. Our evaluation results show that our proposal incurs tolerable computational overhead on the tenants and the cloud provider.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信