Masakazu Hamasaki, Y. Hagio, K. Kasa, Yoshimitsu Kato, Manabu Takakuwa, Tsutomu Obata, Shunichi Nakao, Manabu Miyake, Katsuya Kato, Yosuke Takahata, A. Nakae
{"title":"采用同步扫描速度对光刻机模内指纹进行叠加校正","authors":"Masakazu Hamasaki, Y. Hagio, K. Kasa, Yoshimitsu Kato, Manabu Takakuwa, Tsutomu Obata, Shunichi Nakao, Manabu Miyake, Katsuya Kato, Yosuke Takahata, A. Nakae","doi":"10.1109/ASMC49169.2020.9185339","DOIUrl":null,"url":null,"abstract":"Intra-die overlay is becoming one of the key challenges in high accuracy overlay. While recent progress of overlay metrology has made it viable to monitor intra-die overlay signature by nondestructive methods, traditional intra-field correction does not work well enough to reduce intra-die overlay error of lithography process. In this paper, we demonstrated for the first time that the intra-die overlay correction does work by synchronizing scan speed to intra-die fingerprint and this method is actually applicable to treat both lot-to-lot and intra-wafer variation of intra-die overlay.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"8 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel overlay correction by synchronizing scan speed to intra-die fingerprint on lithography scanner\",\"authors\":\"Masakazu Hamasaki, Y. Hagio, K. Kasa, Yoshimitsu Kato, Manabu Takakuwa, Tsutomu Obata, Shunichi Nakao, Manabu Miyake, Katsuya Kato, Yosuke Takahata, A. Nakae\",\"doi\":\"10.1109/ASMC49169.2020.9185339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intra-die overlay is becoming one of the key challenges in high accuracy overlay. While recent progress of overlay metrology has made it viable to monitor intra-die overlay signature by nondestructive methods, traditional intra-field correction does not work well enough to reduce intra-die overlay error of lithography process. In this paper, we demonstrated for the first time that the intra-die overlay correction does work by synchronizing scan speed to intra-die fingerprint and this method is actually applicable to treat both lot-to-lot and intra-wafer variation of intra-die overlay.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"8 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel overlay correction by synchronizing scan speed to intra-die fingerprint on lithography scanner
Intra-die overlay is becoming one of the key challenges in high accuracy overlay. While recent progress of overlay metrology has made it viable to monitor intra-die overlay signature by nondestructive methods, traditional intra-field correction does not work well enough to reduce intra-die overlay error of lithography process. In this paper, we demonstrated for the first time that the intra-die overlay correction does work by synchronizing scan speed to intra-die fingerprint and this method is actually applicable to treat both lot-to-lot and intra-wafer variation of intra-die overlay.