Laurie Bose, Jianing Chen, S. Carey, P. Dudek, W. Mayol-Cuevas
{"title":"像素处理器阵列的视觉里程计","authors":"Laurie Bose, Jianing Chen, S. Carey, P. Dudek, W. Mayol-Cuevas","doi":"10.1109/ICCV.2017.493","DOIUrl":null,"url":null,"abstract":"We present an approach of estimating constrained egomotion on a Pixel Processor Array (PPA). These devices embed processing and data storage capability into the pixels of the image sensor, allowing for fast and low power parallel computation directly on the image-plane. Rather than the standard visual pipeline whereby whole images are transferred to an external general processing unit, our approach performs all computation upon the PPA itself, with the camera's estimated motion as the only information output. Our approach estimates 3D rotation and a 1D scale-less estimate of translation. We introduce methods of image scaling, rotation and alignment which are performed solely upon the PPA itself and form the basis for conducting motion estimation. We demonstrate the algorithms on a SCAMP-5 vision chip, achieving frame rates >1000Hz at ~2W power consumption.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"99 1","pages":"4614-4622"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Visual Odometry for Pixel Processor Arrays\",\"authors\":\"Laurie Bose, Jianing Chen, S. Carey, P. Dudek, W. Mayol-Cuevas\",\"doi\":\"10.1109/ICCV.2017.493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach of estimating constrained egomotion on a Pixel Processor Array (PPA). These devices embed processing and data storage capability into the pixels of the image sensor, allowing for fast and low power parallel computation directly on the image-plane. Rather than the standard visual pipeline whereby whole images are transferred to an external general processing unit, our approach performs all computation upon the PPA itself, with the camera's estimated motion as the only information output. Our approach estimates 3D rotation and a 1D scale-less estimate of translation. We introduce methods of image scaling, rotation and alignment which are performed solely upon the PPA itself and form the basis for conducting motion estimation. We demonstrate the algorithms on a SCAMP-5 vision chip, achieving frame rates >1000Hz at ~2W power consumption.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"99 1\",\"pages\":\"4614-4622\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present an approach of estimating constrained egomotion on a Pixel Processor Array (PPA). These devices embed processing and data storage capability into the pixels of the image sensor, allowing for fast and low power parallel computation directly on the image-plane. Rather than the standard visual pipeline whereby whole images are transferred to an external general processing unit, our approach performs all computation upon the PPA itself, with the camera's estimated motion as the only information output. Our approach estimates 3D rotation and a 1D scale-less estimate of translation. We introduce methods of image scaling, rotation and alignment which are performed solely upon the PPA itself and form the basis for conducting motion estimation. We demonstrate the algorithms on a SCAMP-5 vision chip, achieving frame rates >1000Hz at ~2W power consumption.