由循环码衍生出新的纠缠辅助量子MDS码

Sujuan Huang, Shixin Zhu, Pan Wang
{"title":"由循环码衍生出新的纠缠辅助量子MDS码","authors":"Sujuan Huang, Shixin Zhu, Pan Wang","doi":"10.26421/QIC23.5-6-4","DOIUrl":null,"url":null,"abstract":"Entanglement-assisted quantum error-correcting codes, which can be seen as a generalization of quantum error-correcting codes, can be constructed from arbitrary classical linear codes by relaxing the self-orthogonality properties and using pre-shared entangled states between the sender and the receiver, and can also improve the performance of quantum error-correcting codes. In this paper, we construct some families of entanglement-assisted quantum maximum-distance-separable codes with parameters $[[\\frac{{{q^2} - 1}}{a},\\frac{{{q^2} - 1}}{a} - 2d+2 + c,d;c]]_q$, where $q$ is a prime power with the form $q = am \\pm \\ell$, $a = \\frac{{\\ell^2} - 1}{3}$ is an odd integer, $\\ell \\equiv 2\\ (\\bmod\\ 6)$ or $\\ell \\equiv 4\\ (\\bmod\\ 6)$, and $m$ is a positive integer. Most of these codes are new in the sense that their parameters are not covered by the codes available in the literature.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"44 1","pages":"415-440"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New entanglement-assisted quantum MDS codes derived from cyclic codes\",\"authors\":\"Sujuan Huang, Shixin Zhu, Pan Wang\",\"doi\":\"10.26421/QIC23.5-6-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entanglement-assisted quantum error-correcting codes, which can be seen as a generalization of quantum error-correcting codes, can be constructed from arbitrary classical linear codes by relaxing the self-orthogonality properties and using pre-shared entangled states between the sender and the receiver, and can also improve the performance of quantum error-correcting codes. In this paper, we construct some families of entanglement-assisted quantum maximum-distance-separable codes with parameters $[[\\\\frac{{{q^2} - 1}}{a},\\\\frac{{{q^2} - 1}}{a} - 2d+2 + c,d;c]]_q$, where $q$ is a prime power with the form $q = am \\\\pm \\\\ell$, $a = \\\\frac{{\\\\ell^2} - 1}{3}$ is an odd integer, $\\\\ell \\\\equiv 2\\\\ (\\\\bmod\\\\ 6)$ or $\\\\ell \\\\equiv 4\\\\ (\\\\bmod\\\\ 6)$, and $m$ is a positive integer. Most of these codes are new in the sense that their parameters are not covered by the codes available in the literature.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"44 1\",\"pages\":\"415-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC23.5-6-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC23.5-6-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纠缠辅助量子纠错码可以看作是量子纠错码的一种推广,它可以在任意经典线性码的基础上,通过放宽自正交性,利用发送端和接收端之间的预共享纠缠态来构造量子纠错码,也可以提高量子纠错码的性能。本文构造了几个参数为$[[\frac{{{q^2} - 1}}{a},\frac{{{q^2} - 1}}{a} - 2d+2 + c,d;c]]_q$的纠缠辅助量子最大距离可分码族,其中$q$为质数幂,形式为$q = am \pm \ell$, $a = \frac{{\ell^2} - 1}{3}$为奇整数、$\ell \equiv 2\ (\bmod\ 6)$或$\ell \equiv 4\ (\bmod\ 6)$, $m$为正整数。这些代码中的大多数都是新的,因为它们的参数没有被文献中可用的代码所涵盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New entanglement-assisted quantum MDS codes derived from cyclic codes
Entanglement-assisted quantum error-correcting codes, which can be seen as a generalization of quantum error-correcting codes, can be constructed from arbitrary classical linear codes by relaxing the self-orthogonality properties and using pre-shared entangled states between the sender and the receiver, and can also improve the performance of quantum error-correcting codes. In this paper, we construct some families of entanglement-assisted quantum maximum-distance-separable codes with parameters $[[\frac{{{q^2} - 1}}{a},\frac{{{q^2} - 1}}{a} - 2d+2 + c,d;c]]_q$, where $q$ is a prime power with the form $q = am \pm \ell$, $a = \frac{{\ell^2} - 1}{3}$ is an odd integer, $\ell \equiv 2\ (\bmod\ 6)$ or $\ell \equiv 4\ (\bmod\ 6)$, and $m$ is a positive integer. Most of these codes are new in the sense that their parameters are not covered by the codes available in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信