{"title":"纳米技术在能源储存、节能和燃烧后二氧化碳捕集中的作用综述","authors":"Meselu Eskezia Ayalew","doi":"10.11648/J.IJMSA.20211003.12","DOIUrl":null,"url":null,"abstract":"Nanotechnology is referred to as the science of nanoscale which is objects that range in nanometers in size. The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. Energy is an unavoidable theme in contemporary society, ranging from basic daily life to superior science and technology. Over increasing energy demand and always deteriorating environmental issues, electricity has turn out to be bottleneck and is hindering the development of society. The use of nanotechnology to increase a suite of sustainable power manufacturing schemes is one of the most necessary scientific challenges of the 21st century. The challenge is to design, to synthesize, and to represent new useful nanomaterials with controllable sizes, shapes, and structures. And also now a day’s a serious interset is required to reduce the level of CO2 the use of advanced and environment friendly CO2 seize technologies. Carbon dioxide seize and storage (CCS) applied sciences can also play an necessary function in this direction. Nanotechnology is used to seize CO2 formore than a few industrial processes. This review is ordinarily centered on the role of nanotechnology in the electricity storage, conservation and post-combustion CO2 absorption process. The features of nanomaterials and nanoparticles have been studied in the current work.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Role of Nanotechnology for Energy Storage, Conservation and Post Combustion CO2 Capture in Industry: A Review\",\"authors\":\"Meselu Eskezia Ayalew\",\"doi\":\"10.11648/J.IJMSA.20211003.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology is referred to as the science of nanoscale which is objects that range in nanometers in size. The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. Energy is an unavoidable theme in contemporary society, ranging from basic daily life to superior science and technology. Over increasing energy demand and always deteriorating environmental issues, electricity has turn out to be bottleneck and is hindering the development of society. The use of nanotechnology to increase a suite of sustainable power manufacturing schemes is one of the most necessary scientific challenges of the 21st century. The challenge is to design, to synthesize, and to represent new useful nanomaterials with controllable sizes, shapes, and structures. And also now a day’s a serious interset is required to reduce the level of CO2 the use of advanced and environment friendly CO2 seize technologies. Carbon dioxide seize and storage (CCS) applied sciences can also play an necessary function in this direction. Nanotechnology is used to seize CO2 formore than a few industrial processes. This review is ordinarily centered on the role of nanotechnology in the electricity storage, conservation and post-combustion CO2 absorption process. The features of nanomaterials and nanoparticles have been studied in the current work.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20211003.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20211003.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Role of Nanotechnology for Energy Storage, Conservation and Post Combustion CO2 Capture in Industry: A Review
Nanotechnology is referred to as the science of nanoscale which is objects that range in nanometers in size. The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. Energy is an unavoidable theme in contemporary society, ranging from basic daily life to superior science and technology. Over increasing energy demand and always deteriorating environmental issues, electricity has turn out to be bottleneck and is hindering the development of society. The use of nanotechnology to increase a suite of sustainable power manufacturing schemes is one of the most necessary scientific challenges of the 21st century. The challenge is to design, to synthesize, and to represent new useful nanomaterials with controllable sizes, shapes, and structures. And also now a day’s a serious interset is required to reduce the level of CO2 the use of advanced and environment friendly CO2 seize technologies. Carbon dioxide seize and storage (CCS) applied sciences can also play an necessary function in this direction. Nanotechnology is used to seize CO2 formore than a few industrial processes. This review is ordinarily centered on the role of nanotechnology in the electricity storage, conservation and post-combustion CO2 absorption process. The features of nanomaterials and nanoparticles have been studied in the current work.