{"title":"关于线性有序半格上的不可约代数集","authors":"A. Shevlyakov","doi":"10.1515/gcc-2016-0014","DOIUrl":null,"url":null,"abstract":"Abstract Equations over linearly ordered semilattices are studied. For any equation t ( X ) = s ( X ) ${t(X)=s(X)}$ we find irreducible components of its solution set and compute the average number of irreducible components of all equations in n variables.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":"187 - 195"},"PeriodicalIF":0.1000,"publicationDate":"2016-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On irreducible algebraic sets over linearly ordered semilattices\",\"authors\":\"A. Shevlyakov\",\"doi\":\"10.1515/gcc-2016-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Equations over linearly ordered semilattices are studied. For any equation t ( X ) = s ( X ) ${t(X)=s(X)}$ we find irreducible components of its solution set and compute the average number of irreducible components of all equations in n variables.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"187 - 195\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2016-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2016-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On irreducible algebraic sets over linearly ordered semilattices
Abstract Equations over linearly ordered semilattices are studied. For any equation t ( X ) = s ( X ) ${t(X)=s(X)}$ we find irreducible components of its solution set and compute the average number of irreducible components of all equations in n variables.