{"title":"膜脂与溶血因子溶血的关系(双翅目:蝇科)","authors":"H.J. Kirch , G. Spates , W.J. Kloft , J.R. DeLoach","doi":"10.1016/0020-1790(91)90040-L","DOIUrl":null,"url":null,"abstract":"<div><p>Posterior-midgut homogenate from female stable flies prepared at 12 h after feeding hemolyzed erythrocytes from 6 different mammalian species more readily than homogenate prepared at 22 h. A significant correlation was obtained between the per cent sphingomyelin content of the erythrocyte membrane and the time required for lysis by the 12 h homogenate. Erythrocytes with low sphingomyelin content were more sensitive to lysis than cells with high sphingomyelin. No such correlation exists for hemolysis by 22 h homogenate. Mean corpuscular volume and osmotic fragilities of erythrocytes were not related to hemolysis either by 12 or 22 h homogenate. Determination of phospholipase C and sphingomyelinase activities showed that the hydrolysis rate of phospholipase C in homogenates prepared at 12–14 h was almost twice as much as sphingomyelinase activity. Whereas hydrolysis rates in 22–24 h homogenate were not different and markedly reduced compared to the 12–14 h homogenate. The times required for erythrocyte hemolysis related to the phospholipase C and sphingomyelinase activity profiles suggests that these enzyme activities participate in the <em>in vitro</em> hemolysis of red blood cells. Bovine and human erythrocytes change their biconcave contour into a spiculated spherical shape when they are exposed to midgut homogenate. This shape change is interpreted as a detergent induced modification of the red cell membrane which renders the erythrocytes more vulnerable to hemolysis.</p></div>","PeriodicalId":13955,"journal":{"name":"Insect Biochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-1790(91)90040-L","citationCount":"6","resultStr":"{\"title\":\"The relationship of membrane lipids to species specific hemolysis by hemolytic factors from Stomoxys calcitrans (L.) (Diptera: Muscidae)\",\"authors\":\"H.J. Kirch , G. Spates , W.J. Kloft , J.R. DeLoach\",\"doi\":\"10.1016/0020-1790(91)90040-L\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Posterior-midgut homogenate from female stable flies prepared at 12 h after feeding hemolyzed erythrocytes from 6 different mammalian species more readily than homogenate prepared at 22 h. A significant correlation was obtained between the per cent sphingomyelin content of the erythrocyte membrane and the time required for lysis by the 12 h homogenate. Erythrocytes with low sphingomyelin content were more sensitive to lysis than cells with high sphingomyelin. No such correlation exists for hemolysis by 22 h homogenate. Mean corpuscular volume and osmotic fragilities of erythrocytes were not related to hemolysis either by 12 or 22 h homogenate. Determination of phospholipase C and sphingomyelinase activities showed that the hydrolysis rate of phospholipase C in homogenates prepared at 12–14 h was almost twice as much as sphingomyelinase activity. Whereas hydrolysis rates in 22–24 h homogenate were not different and markedly reduced compared to the 12–14 h homogenate. The times required for erythrocyte hemolysis related to the phospholipase C and sphingomyelinase activity profiles suggests that these enzyme activities participate in the <em>in vitro</em> hemolysis of red blood cells. Bovine and human erythrocytes change their biconcave contour into a spiculated spherical shape when they are exposed to midgut homogenate. This shape change is interpreted as a detergent induced modification of the red cell membrane which renders the erythrocytes more vulnerable to hemolysis.</p></div>\",\"PeriodicalId\":13955,\"journal\":{\"name\":\"Insect Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0020-1790(91)90040-L\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/002017909190040L\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/002017909190040L","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The relationship of membrane lipids to species specific hemolysis by hemolytic factors from Stomoxys calcitrans (L.) (Diptera: Muscidae)
Posterior-midgut homogenate from female stable flies prepared at 12 h after feeding hemolyzed erythrocytes from 6 different mammalian species more readily than homogenate prepared at 22 h. A significant correlation was obtained between the per cent sphingomyelin content of the erythrocyte membrane and the time required for lysis by the 12 h homogenate. Erythrocytes with low sphingomyelin content were more sensitive to lysis than cells with high sphingomyelin. No such correlation exists for hemolysis by 22 h homogenate. Mean corpuscular volume and osmotic fragilities of erythrocytes were not related to hemolysis either by 12 or 22 h homogenate. Determination of phospholipase C and sphingomyelinase activities showed that the hydrolysis rate of phospholipase C in homogenates prepared at 12–14 h was almost twice as much as sphingomyelinase activity. Whereas hydrolysis rates in 22–24 h homogenate were not different and markedly reduced compared to the 12–14 h homogenate. The times required for erythrocyte hemolysis related to the phospholipase C and sphingomyelinase activity profiles suggests that these enzyme activities participate in the in vitro hemolysis of red blood cells. Bovine and human erythrocytes change their biconcave contour into a spiculated spherical shape when they are exposed to midgut homogenate. This shape change is interpreted as a detergent induced modification of the red cell membrane which renders the erythrocytes more vulnerable to hemolysis.