Schatten空间射影张量积的Arens正则性

L. Singh
{"title":"Schatten空间射影张量积的Arens正则性","authors":"L. Singh","doi":"10.1216/rmj.2021.51.1433","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the Arens regularity of projective tensor product of Schatten p-class operators. We use the biregularity condition given by \\\"Ulger to prove that $S_p(\\mathcal H)\\otimes^\\gamma S_q(\\mathcal H)$ is not Arens regular. We further prove that $B(S_2(\\mathcal H))\\otimes^\\gamma S_2(\\mathcal H)$ is not Arens regular(with respect to usual multiplication) while it is regular with respect to Schur product. Thus we demonstrate the importance of biregularity condition given in \\cite{Ulger} and the convenience of its use to prove Arens regularity or irregularity through some concrete examples.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Arens regularity of projective tensor product of Schatten spaces\",\"authors\":\"L. Singh\",\"doi\":\"10.1216/rmj.2021.51.1433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the Arens regularity of projective tensor product of Schatten p-class operators. We use the biregularity condition given by \\\\\\\"Ulger to prove that $S_p(\\\\mathcal H)\\\\otimes^\\\\gamma S_q(\\\\mathcal H)$ is not Arens regular. We further prove that $B(S_2(\\\\mathcal H))\\\\otimes^\\\\gamma S_2(\\\\mathcal H)$ is not Arens regular(with respect to usual multiplication) while it is regular with respect to Schur product. Thus we demonstrate the importance of biregularity condition given in \\\\cite{Ulger} and the convenience of its use to prove Arens regularity or irregularity through some concrete examples.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2021.51.1433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2021.51.1433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了Schatten p类算子的射射张量积的Arens正则性。利用Ülger给出的非正则性条件证明$S_p(\mathcal H)\otimes^\gamma S_q(\mathcal H)$不是Arens正则。我们进一步证明$B(S_2(\mathcal H))\otimes^\gamma S_2(\mathcal H)$不是阿伦斯正则(对于一般乘法),而对于舒尔积是正则的。从而通过一些具体的例子证明了\cite{Ulger}中给出的非正则条件的重要性,以及用它来证明阿伦斯正则或非正则的便利性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Arens regularity of projective tensor product of Schatten spaces
In this paper we discuss the Arens regularity of projective tensor product of Schatten p-class operators. We use the biregularity condition given by \"Ulger to prove that $S_p(\mathcal H)\otimes^\gamma S_q(\mathcal H)$ is not Arens regular. We further prove that $B(S_2(\mathcal H))\otimes^\gamma S_2(\mathcal H)$ is not Arens regular(with respect to usual multiplication) while it is regular with respect to Schur product. Thus we demonstrate the importance of biregularity condition given in \cite{Ulger} and the convenience of its use to prove Arens regularity or irregularity through some concrete examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信