模拟电子束辐照下交联聚乙烯/铜纳米复合材料中压电缆的电场分布,参考交联聚乙烯市场

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
A. I. Sharshir, S. Fayek, Amal. F. Abd El-Gawad, M. Farahat, M. Ismail, M. Ghobashy
{"title":"模拟电子束辐照下交联聚乙烯/铜纳米复合材料中压电缆的电场分布,参考交联聚乙烯市场","authors":"A. I. Sharshir, S. Fayek, Amal. F. Abd El-Gawad, M. Farahat, M. Ismail, M. Ghobashy","doi":"10.1080/14658011.2021.1975445","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, the distribution of the electric field of medium voltage (MV) underground cable insulation made of polyethylene/copper nanoparticles (XLPE/Cu) is investigated. Three methods were established for copper nanoparticles (CuNPs) synthesis such as the alkaline reduction process, electrolysis process and metal displacement reaction. Ultraviolet–visible spectra, X-ray diffraction, and transmission electron microscopy (TEM) were used to classify the obtained CuNPs. The XLPE/Cu films with different CuNP weight content (0%, 1%, 3% and 5%) were subjected to a 3 MeV electron beam (EB) with different doses (0, 15, 20 and 25 kGy). The optimum AC/DC conductivity (AC 2 × 10−3 S m−1, DC 4.63 × 10−2 S m−1) in minimum relative permittivity (2.05) achieved for (XLPE/5-Cu) 25 kGy that is has a CuNP content of 5 wt-% and irradiated at 25 kGy. The electric field distribution in the middle of the (XLPE/5-Cu) 25 kGy sample is maximum uniform than at the top or bottom.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"41 1","pages":"281 - 292"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simulating the electric field distribution in medium-voltage cables of cross-linked polyethylene/Cu nanocomposites irradiated by E-beam with reference to the XLPE market\",\"authors\":\"A. I. Sharshir, S. Fayek, Amal. F. Abd El-Gawad, M. Farahat, M. Ismail, M. Ghobashy\",\"doi\":\"10.1080/14658011.2021.1975445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, the distribution of the electric field of medium voltage (MV) underground cable insulation made of polyethylene/copper nanoparticles (XLPE/Cu) is investigated. Three methods were established for copper nanoparticles (CuNPs) synthesis such as the alkaline reduction process, electrolysis process and metal displacement reaction. Ultraviolet–visible spectra, X-ray diffraction, and transmission electron microscopy (TEM) were used to classify the obtained CuNPs. The XLPE/Cu films with different CuNP weight content (0%, 1%, 3% and 5%) were subjected to a 3 MeV electron beam (EB) with different doses (0, 15, 20 and 25 kGy). The optimum AC/DC conductivity (AC 2 × 10−3 S m−1, DC 4.63 × 10−2 S m−1) in minimum relative permittivity (2.05) achieved for (XLPE/5-Cu) 25 kGy that is has a CuNP content of 5 wt-% and irradiated at 25 kGy. The electric field distribution in the middle of the (XLPE/5-Cu) 25 kGy sample is maximum uniform than at the top or bottom.\",\"PeriodicalId\":20245,\"journal\":{\"name\":\"Plastics, Rubber and Composites\",\"volume\":\"41 1\",\"pages\":\"281 - 292\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plastics, Rubber and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14658011.2021.1975445\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2021.1975445","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文研究了聚乙烯/铜纳米颗粒(XLPE/Cu)中压(MV)地下电缆绝缘的电场分布。建立了碱还原法、电解法和金属置换法三种合成纳米铜的方法。利用紫外可见光谱、x射线衍射和透射电子显微镜(TEM)对得到的CuNPs进行了分类。用3 MeV、0、15、20和25 kGy的不同剂量电子束(EB)对不同CuNP含量(0%、1%、3%和5%)的XLPE/Cu薄膜进行处理。在(XLPE/5- cu) 25 kGy的条件下,在cup含量为5wt -%、辐射强度为25 kGy的条件下,获得了最佳的AC/DC电导率(AC 2 × 10−3 S m−1,DC 4.63 × 10−2 S m−1),最小相对介电常数为2.05。25 kGy (XLPE/5-Cu)样品的电场分布在中部比顶部和底部均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating the electric field distribution in medium-voltage cables of cross-linked polyethylene/Cu nanocomposites irradiated by E-beam with reference to the XLPE market
ABSTRACT In this paper, the distribution of the electric field of medium voltage (MV) underground cable insulation made of polyethylene/copper nanoparticles (XLPE/Cu) is investigated. Three methods were established for copper nanoparticles (CuNPs) synthesis such as the alkaline reduction process, electrolysis process and metal displacement reaction. Ultraviolet–visible spectra, X-ray diffraction, and transmission electron microscopy (TEM) were used to classify the obtained CuNPs. The XLPE/Cu films with different CuNP weight content (0%, 1%, 3% and 5%) were subjected to a 3 MeV electron beam (EB) with different doses (0, 15, 20 and 25 kGy). The optimum AC/DC conductivity (AC 2 × 10−3 S m−1, DC 4.63 × 10−2 S m−1) in minimum relative permittivity (2.05) achieved for (XLPE/5-Cu) 25 kGy that is has a CuNP content of 5 wt-% and irradiated at 25 kGy. The electric field distribution in the middle of the (XLPE/5-Cu) 25 kGy sample is maximum uniform than at the top or bottom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plastics, Rubber and Composites
Plastics, Rubber and Composites 工程技术-材料科学:复合
CiteScore
4.10
自引率
0.00%
发文量
24
审稿时长
4 months
期刊介绍: Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信