基于gpu友好的VLSI互连电容提取浮动随机游走算法

Kuangya Zhai, Wenjian Yu, H. Zhuang
{"title":"基于gpu友好的VLSI互连电容提取浮动随机游走算法","authors":"Kuangya Zhai, Wenjian Yu, H. Zhuang","doi":"10.7873/DATE.2013.336","DOIUrl":null,"url":null,"abstract":"The floating random walk (FRW) algorithm is an important field-solver algorithm for capacitance extraction, which has several merits compared with other boundary element method (BEM) based algorithms. In this paper, the FRW algorithm is accelerated with the modern graphics processing units (GPUs). We propose an iterative GPU-based FRW algorithm flow and the technique using an inverse cumulative probability array (ICPA), to reduce the divergence among walks and the global-memory accessing. A variant FRW scheme is proposed to utilize the benefit of ICPA, so that it accelerates the extraction of multi-dielectric structures. The technique for extracting multiple nets concurrently is also discussed. Numerical results show that our GPU-based FRW brings over 20X speedup for various test cases with 0.5% convergence criterion over the CPU counterpart. For the extraction of multiple nets, our GPU-based FRW outperforms the CPU counterpart by up to 59X.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"12 1","pages":"1661-1666"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"GPU-friendly floating random walk algorithm for capacitance extraction of VLSI interconnects\",\"authors\":\"Kuangya Zhai, Wenjian Yu, H. Zhuang\",\"doi\":\"10.7873/DATE.2013.336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The floating random walk (FRW) algorithm is an important field-solver algorithm for capacitance extraction, which has several merits compared with other boundary element method (BEM) based algorithms. In this paper, the FRW algorithm is accelerated with the modern graphics processing units (GPUs). We propose an iterative GPU-based FRW algorithm flow and the technique using an inverse cumulative probability array (ICPA), to reduce the divergence among walks and the global-memory accessing. A variant FRW scheme is proposed to utilize the benefit of ICPA, so that it accelerates the extraction of multi-dielectric structures. The technique for extracting multiple nets concurrently is also discussed. Numerical results show that our GPU-based FRW brings over 20X speedup for various test cases with 0.5% convergence criterion over the CPU counterpart. For the extraction of multiple nets, our GPU-based FRW outperforms the CPU counterpart by up to 59X.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"12 1\",\"pages\":\"1661-1666\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

浮动随机漫步(FRW)算法是一种重要的电容提取场求解算法,与其他基于边界元法(BEM)的算法相比,该算法具有许多优点。本文采用现代图形处理器(gpu)对FRW算法进行了加速。我们提出了一种基于gpu的迭代FRW算法流程和使用逆累积概率阵列(ICPA)的技术,以减少行走之间的分歧和全局内存访问。利用ICPA算法的优点,提出了一种改进的FRW算法,加快了多介电结构的提取速度。讨论了同时提取多个网络的技术。数值结果表明,我们的基于gpu的FRW在各种测试用例中带来了超过20倍的加速,收敛标准为CPU的0.5%。对于多个网络的提取,我们基于gpu的FRW比CPU的同类性能高出59倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-friendly floating random walk algorithm for capacitance extraction of VLSI interconnects
The floating random walk (FRW) algorithm is an important field-solver algorithm for capacitance extraction, which has several merits compared with other boundary element method (BEM) based algorithms. In this paper, the FRW algorithm is accelerated with the modern graphics processing units (GPUs). We propose an iterative GPU-based FRW algorithm flow and the technique using an inverse cumulative probability array (ICPA), to reduce the divergence among walks and the global-memory accessing. A variant FRW scheme is proposed to utilize the benefit of ICPA, so that it accelerates the extraction of multi-dielectric structures. The technique for extracting multiple nets concurrently is also discussed. Numerical results show that our GPU-based FRW brings over 20X speedup for various test cases with 0.5% convergence criterion over the CPU counterpart. For the extraction of multiple nets, our GPU-based FRW outperforms the CPU counterpart by up to 59X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信