{"title":"关于鞅强大数定律的收敛速度","authors":"Y. Miao, Guangyu Yang, G. Stoica","doi":"10.1080/17442508.2014.938075","DOIUrl":null,"url":null,"abstract":"The aim of this note is to establish the Baum–Katz type rate of convergence in the Marcinkiewicz–Zygmund strong law of large numbers for martingales, which improves the recent works of Stoica [Series of moderate deviation probabilities for martingales, J. Math. Anal. Appl. 336 (2005), pp. 759–763; Baum–Katz–Nagaev type results for martingales, J. Math. Anal. Appl. 336 (2007), pp. 1489–1492; A note on the rate of convergence in the strong law of large numbers for martingales, J. Math. Anal. Appl. 381 (2011), pp. 910–913]. Furthermore, we also study some relevant limit behaviours for the uniform mixing process. Under some uniform mixing conditions, the sufficient and necessary condition of the convergence of the martingale series is established.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the rate of convergence in the strong law of large numbers for martingales\",\"authors\":\"Y. Miao, Guangyu Yang, G. Stoica\",\"doi\":\"10.1080/17442508.2014.938075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this note is to establish the Baum–Katz type rate of convergence in the Marcinkiewicz–Zygmund strong law of large numbers for martingales, which improves the recent works of Stoica [Series of moderate deviation probabilities for martingales, J. Math. Anal. Appl. 336 (2005), pp. 759–763; Baum–Katz–Nagaev type results for martingales, J. Math. Anal. Appl. 336 (2007), pp. 1489–1492; A note on the rate of convergence in the strong law of large numbers for martingales, J. Math. Anal. Appl. 381 (2011), pp. 910–913]. Furthermore, we also study some relevant limit behaviours for the uniform mixing process. Under some uniform mixing conditions, the sufficient and necessary condition of the convergence of the martingale series is established.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.938075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.938075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the rate of convergence in the strong law of large numbers for martingales
The aim of this note is to establish the Baum–Katz type rate of convergence in the Marcinkiewicz–Zygmund strong law of large numbers for martingales, which improves the recent works of Stoica [Series of moderate deviation probabilities for martingales, J. Math. Anal. Appl. 336 (2005), pp. 759–763; Baum–Katz–Nagaev type results for martingales, J. Math. Anal. Appl. 336 (2007), pp. 1489–1492; A note on the rate of convergence in the strong law of large numbers for martingales, J. Math. Anal. Appl. 381 (2011), pp. 910–913]. Furthermore, we also study some relevant limit behaviours for the uniform mixing process. Under some uniform mixing conditions, the sufficient and necessary condition of the convergence of the martingale series is established.