htc可识别图的代数性质

Bohao Yao, R. Evans
{"title":"htc可识别图的代数性质","authors":"Bohao Yao, R. Evans","doi":"10.2140/astat.2022.13.19","DOIUrl":null,"url":null,"abstract":"In this paper, we explore some algebraic properties of linear structural equation modelsthat can be represented by an HTC-identifiable graph. In particular, we prove that all mixedgraphs are HTC-identifiable if and only if all the regression coefficients can be recovered fromthe covariance matrix using straightforward linear algebra operations. We also find a set ofpolynomials that generates the ideal that encompasses all the equality constraints of the modelon the cone of positive definite matrices. We further prove that this set of polynomials are theminimal generators of said ideal for a subset of HTC-identifiable graphs.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic properties of HTC-identifiable\\ngraphs\",\"authors\":\"Bohao Yao, R. Evans\",\"doi\":\"10.2140/astat.2022.13.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore some algebraic properties of linear structural equation modelsthat can be represented by an HTC-identifiable graph. In particular, we prove that all mixedgraphs are HTC-identifiable if and only if all the regression coefficients can be recovered fromthe covariance matrix using straightforward linear algebra operations. We also find a set ofpolynomials that generates the ideal that encompasses all the equality constraints of the modelon the cone of positive definite matrices. We further prove that this set of polynomials are theminimal generators of said ideal for a subset of HTC-identifiable graphs.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2022.13.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2022.13.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了可以用htc可识别图表示的线性结构方程模型的一些代数性质。特别地,我们证明了所有的混合图是htc可识别的当且仅当所有的回归系数可以用直接的线性代数操作从协方差矩阵中恢复。我们还找到了一组多项式,它产生了包含正定矩阵锥上模型的所有等式约束的理想。我们进一步证明了这组多项式是htc可识别图子集的最小理想生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic properties of HTC-identifiable graphs
In this paper, we explore some algebraic properties of linear structural equation modelsthat can be represented by an HTC-identifiable graph. In particular, we prove that all mixedgraphs are HTC-identifiable if and only if all the regression coefficients can be recovered fromthe covariance matrix using straightforward linear algebra operations. We also find a set ofpolynomials that generates the ideal that encompasses all the equality constraints of the modelon the cone of positive definite matrices. We further prove that this set of polynomials are theminimal generators of said ideal for a subset of HTC-identifiable graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信