由淋体进化算子产生的动力系统

U. Rozikov, R. Varro
{"title":"由淋体进化算子产生的动力系统","authors":"U. Rozikov, R. Varro","doi":"10.5890/DNC.2016.06.007","DOIUrl":null,"url":null,"abstract":"In this paper we consider discrete-time dynamical systems generated by gonosomal evolution operators of sex linked inheritance. Mainly we study dynamical systems of a hemophilia, which biologically is a group of hereditary genetic disorders that impair the body's ability to control blood clotting or coagulation, which is used to stop bleeding when a blood vessel is broken. We give an algebraic model of the biological system corresponding to the hemophilia. The evolution of such system is studied by a nonlinear (quadratic) gonosomal operator. In a general setting, this operator is considered as a mapping from $\\mathbb R^n$, $n\\geq 2$ to itself. In particular, for a gonosomal operator at $n=4$ we explicitly give all (two) fixed points. Then limit points of the trajectories of the corresponding dynamical system are studied. Moreover we consider a normalized version of the gonosomal operator. In the case $n=4$, for the normalized gonosomal operator we show uniqueness of fixed point and study limit points of the dynamical system.","PeriodicalId":83871,"journal":{"name":"Population dynamics quarterly","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamical systems generated by a gonosomal evolution operator\",\"authors\":\"U. Rozikov, R. Varro\",\"doi\":\"10.5890/DNC.2016.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider discrete-time dynamical systems generated by gonosomal evolution operators of sex linked inheritance. Mainly we study dynamical systems of a hemophilia, which biologically is a group of hereditary genetic disorders that impair the body's ability to control blood clotting or coagulation, which is used to stop bleeding when a blood vessel is broken. We give an algebraic model of the biological system corresponding to the hemophilia. The evolution of such system is studied by a nonlinear (quadratic) gonosomal operator. In a general setting, this operator is considered as a mapping from $\\\\mathbb R^n$, $n\\\\geq 2$ to itself. In particular, for a gonosomal operator at $n=4$ we explicitly give all (two) fixed points. Then limit points of the trajectories of the corresponding dynamical system are studied. Moreover we consider a normalized version of the gonosomal operator. In the case $n=4$, for the normalized gonosomal operator we show uniqueness of fixed point and study limit points of the dynamical system.\",\"PeriodicalId\":83871,\"journal\":{\"name\":\"Population dynamics quarterly\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Population dynamics quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5890/DNC.2016.06.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Population dynamics quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5890/DNC.2016.06.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文考虑由性连锁遗传的性体进化算子产生的离散时间动力系统。我们主要研究血友病的动力系统,血友病在生物学上是一组遗传性遗传疾病,它损害了身体控制血液凝固或凝固的能力,当血管破裂时,血液凝固或凝固用于止血。我们给出了血友病生物系统的代数模型。用非线性(二次)淋体算子研究了该系统的演化。在一般设置中,此操作符被视为从$\mathbb R^n$, $n\geq 2$到自身的映射。特别地,对于在$n=4$处的淋体算子,我们明确地给出了所有(两个)不动点。然后研究了相应动力系统轨迹的极限点。此外,我们考虑一个标准化版本的淋体算子。对于归一化性体算子$n=4$,我们给出了不动点的唯一性,并研究了动力系统的极限点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical systems generated by a gonosomal evolution operator
In this paper we consider discrete-time dynamical systems generated by gonosomal evolution operators of sex linked inheritance. Mainly we study dynamical systems of a hemophilia, which biologically is a group of hereditary genetic disorders that impair the body's ability to control blood clotting or coagulation, which is used to stop bleeding when a blood vessel is broken. We give an algebraic model of the biological system corresponding to the hemophilia. The evolution of such system is studied by a nonlinear (quadratic) gonosomal operator. In a general setting, this operator is considered as a mapping from $\mathbb R^n$, $n\geq 2$ to itself. In particular, for a gonosomal operator at $n=4$ we explicitly give all (two) fixed points. Then limit points of the trajectories of the corresponding dynamical system are studied. Moreover we consider a normalized version of the gonosomal operator. In the case $n=4$, for the normalized gonosomal operator we show uniqueness of fixed point and study limit points of the dynamical system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信