广义Gorenstein模

Pub Date : 2022-12-01 DOI:10.1142/s1005386722000463
A. Iacob
{"title":"广义Gorenstein模","authors":"A. Iacob","doi":"10.1142/s1005386722000463","DOIUrl":null,"url":null,"abstract":"We introduce a generalization of the Gorenstein injective modules: the Gorenstein [Formula: see text]-injective modules (denoted by [Formula: see text]). They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor [Formula: see text], with [Formula: see text] any [Formula: see text]-injective module. Thus, [Formula: see text] is the class of classical Gorenstein injective modules, and [Formula: see text] is the class of Ding injective modules. We prove that over any ring [Formula: see text], for any [Formula: see text], the class [Formula: see text] is the right half of a perfect cotorsion pair, and therefore it is an enveloping class. For [Formula: see text] we show that [Formula: see text] (i.e., the Ding injectives) forms the right half of a hereditary cotorsion pair. If moreover the ring [Formula: see text] is coherent, then the Ding injective modules form an enveloping class. We also define the dual notion, that of Gorenstein [Formula: see text]-projectives (denoted by [Formula: see text]). They generalize the Ding projective modules, and so, the Gorenstein projective modules. We prove that for any[Formula: see text] the class [Formula: see text] is the left half of a complete hereditary cotorsion pair, and therefore it is special precovering.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Gorenstein Modules\",\"authors\":\"A. Iacob\",\"doi\":\"10.1142/s1005386722000463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a generalization of the Gorenstein injective modules: the Gorenstein [Formula: see text]-injective modules (denoted by [Formula: see text]). They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor [Formula: see text], with [Formula: see text] any [Formula: see text]-injective module. Thus, [Formula: see text] is the class of classical Gorenstein injective modules, and [Formula: see text] is the class of Ding injective modules. We prove that over any ring [Formula: see text], for any [Formula: see text], the class [Formula: see text] is the right half of a perfect cotorsion pair, and therefore it is an enveloping class. For [Formula: see text] we show that [Formula: see text] (i.e., the Ding injectives) forms the right half of a hereditary cotorsion pair. If moreover the ring [Formula: see text] is coherent, then the Ding injective modules form an enveloping class. We also define the dual notion, that of Gorenstein [Formula: see text]-projectives (denoted by [Formula: see text]). They generalize the Ding projective modules, and so, the Gorenstein projective modules. We prove that for any[Formula: see text] the class [Formula: see text] is the left half of a complete hereditary cotorsion pair, and therefore it is special precovering.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们引入了Gorenstein内射模的一种推广:Gorenstein[公式:见文]-内射模(用[公式:见文]表示)。它们是内射模的精确复合体的循环,当我们将函子[公式:见文]应用于[公式:见文]任何[公式:见文]内射模时,它们仍然是精确的。因此,[公式:见文]为经典Gorenstein内射模类,[公式:见文]为Ding内射模类。我们证明了在任意环上,对于任意[公式:见文],类[公式:见文]是完美扭转对的右半部分,因此它是一个包络类。对于[公式:见文],我们证明[公式:见文](即,丁注射剂)构成遗传扭转对的右半部分。此外,如果环[公式:见文本]是相干的,则丁内射模形成一个包络类。我们还定义了对偶概念,即Gorenstein的[公式:见文]-投影(用[公式:见文]表示)。它们推广了Ding投影模,也推广了Gorenstein投影模。我们证明了对于任何[公式:见文]类[公式:见文]是完全遗传扭转对的左半部分,因此它是特殊覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized Gorenstein Modules
We introduce a generalization of the Gorenstein injective modules: the Gorenstein [Formula: see text]-injective modules (denoted by [Formula: see text]). They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor [Formula: see text], with [Formula: see text] any [Formula: see text]-injective module. Thus, [Formula: see text] is the class of classical Gorenstein injective modules, and [Formula: see text] is the class of Ding injective modules. We prove that over any ring [Formula: see text], for any [Formula: see text], the class [Formula: see text] is the right half of a perfect cotorsion pair, and therefore it is an enveloping class. For [Formula: see text] we show that [Formula: see text] (i.e., the Ding injectives) forms the right half of a hereditary cotorsion pair. If moreover the ring [Formula: see text] is coherent, then the Ding injective modules form an enveloping class. We also define the dual notion, that of Gorenstein [Formula: see text]-projectives (denoted by [Formula: see text]). They generalize the Ding projective modules, and so, the Gorenstein projective modules. We prove that for any[Formula: see text] the class [Formula: see text] is the left half of a complete hereditary cotorsion pair, and therefore it is special precovering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信