{"title":"CMUT超声波电源链路前端,用于身体深处的无线电力传输","authors":"Saoni Banerji, W. Goh, J. Cheong, M. Je","doi":"10.1109/IMWS-BIO.2013.6756176","DOIUrl":null,"url":null,"abstract":"Wireless implantable devices have revolutionized the field of biomedical engineering for as long as adequate power supplies are conjured. This paper presents an ultrasonic power link front-end interfaced with a capacitive micromachined ultrasonic transducer (CMUT). The ultrasonic power link front-end consists of a rectifier, a charge pump, a clock extractor and a phase generator. The power link front-end designed in 0.18-μm CMOS process provides a 17 V DC supply for the implant microsystem, e.g. neural stimulator. It achieves an overall power efficiency of 0.3% in simulation.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"56 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"CMUT ultrasonic power link front-end for wireless power transfer deep in body\",\"authors\":\"Saoni Banerji, W. Goh, J. Cheong, M. Je\",\"doi\":\"10.1109/IMWS-BIO.2013.6756176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless implantable devices have revolutionized the field of biomedical engineering for as long as adequate power supplies are conjured. This paper presents an ultrasonic power link front-end interfaced with a capacitive micromachined ultrasonic transducer (CMUT). The ultrasonic power link front-end consists of a rectifier, a charge pump, a clock extractor and a phase generator. The power link front-end designed in 0.18-μm CMOS process provides a 17 V DC supply for the implant microsystem, e.g. neural stimulator. It achieves an overall power efficiency of 0.3% in simulation.\",\"PeriodicalId\":6321,\"journal\":{\"name\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"volume\":\"56 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-BIO.2013.6756176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CMUT ultrasonic power link front-end for wireless power transfer deep in body
Wireless implantable devices have revolutionized the field of biomedical engineering for as long as adequate power supplies are conjured. This paper presents an ultrasonic power link front-end interfaced with a capacitive micromachined ultrasonic transducer (CMUT). The ultrasonic power link front-end consists of a rectifier, a charge pump, a clock extractor and a phase generator. The power link front-end designed in 0.18-μm CMOS process provides a 17 V DC supply for the implant microsystem, e.g. neural stimulator. It achieves an overall power efficiency of 0.3% in simulation.