紧凑流形上多稳态系统的光滑输出-状态稳定性

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
D. Angeli, Paolo Forni
{"title":"紧凑流形上多稳态系统的光滑输出-状态稳定性","authors":"D. Angeli, Paolo Forni","doi":"10.1051/cocv/2022021","DOIUrl":null,"url":null,"abstract":"Output-to-State Stability (OSS) is a notion of detectability for nonlinear systems that is formulated in the ISS  framework. We generalize the notion of OSS for systems which possess a decomposable invariant set and evolve on compact manifolds. Building upon a recent extension of the ISS theory for this very class of systems [2], the paper provides equivalent characterizations of the OSS property in terms of asymptotic estimates of the state trajectories and, in particular, in terms of existence of smooth Lyapunov-like functions.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"29 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth output-to-state stability for multistable systems on compact manifolds\",\"authors\":\"D. Angeli, Paolo Forni\",\"doi\":\"10.1051/cocv/2022021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Output-to-State Stability (OSS) is a notion of detectability for nonlinear systems that is formulated in the ISS  framework. We generalize the notion of OSS for systems which possess a decomposable invariant set and evolve on compact manifolds. Building upon a recent extension of the ISS theory for this very class of systems [2], the paper provides equivalent characterizations of the OSS property in terms of asymptotic estimates of the state trajectories and, in particular, in terms of existence of smooth Lyapunov-like functions.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2022021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2022021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

输出到状态稳定性(OSS)是在ISS框架中提出的非线性系统的可检测性概念。我们将OSS的概念推广到具有可分解不变集并在紧流形上演化的系统。基于最近对这类系统的ISS理论的扩展[2],本文根据状态轨迹的渐近估计,特别是根据光滑lyapunov类函数的存在性,提供了OSS性质的等效表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth output-to-state stability for multistable systems on compact manifolds
Output-to-State Stability (OSS) is a notion of detectability for nonlinear systems that is formulated in the ISS  framework. We generalize the notion of OSS for systems which possess a decomposable invariant set and evolve on compact manifolds. Building upon a recent extension of the ISS theory for this very class of systems [2], the paper provides equivalent characterizations of the OSS property in terms of asymptotic estimates of the state trajectories and, in particular, in terms of existence of smooth Lyapunov-like functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信