Banach空间中增生算子的黏度逼近方法

IF 2.5 2区 数学 Q1 MATHEMATICS
Xu Hong-kun, N. Altwaijry, I. Alzughaibi, S. Chebbi
{"title":"Banach空间中增生算子的黏度逼近方法","authors":"Xu Hong-kun, N. Altwaijry, I. Alzughaibi, S. Chebbi","doi":"10.23952/jnva.6.2022.1.03","DOIUrl":null,"url":null,"abstract":"We extend the viscosity approximation method (VAM) to accretive operators (via their resolvents) in a uniformly convex and/or uniformly Gâteaux differentiable Banach space X to find a zero of an m-accretive operator and of the sum of two m-accretive operators. In all cases, we prove the strong convergence of our VAM algorithms and the limit of the iterates is identified as the unique sunny nonexpansive retraction onto to the zero set of the operator.","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The viscosity approximation method for accretive operators in Banach spaces\",\"authors\":\"Xu Hong-kun, N. Altwaijry, I. Alzughaibi, S. Chebbi\",\"doi\":\"10.23952/jnva.6.2022.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the viscosity approximation method (VAM) to accretive operators (via their resolvents) in a uniformly convex and/or uniformly Gâteaux differentiable Banach space X to find a zero of an m-accretive operator and of the sum of two m-accretive operators. In all cases, we prove the strong convergence of our VAM algorithms and the limit of the iterates is identified as the unique sunny nonexpansive retraction onto to the zero set of the operator.\",\"PeriodicalId\":48488,\"journal\":{\"name\":\"Journal of Nonlinear and Variational Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear and Variational Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23952/jnva.6.2022.1.03\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.1.03","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们将黏性近似方法(VAM)推广到一致凸和/或一致gaux可微Banach空间X中的增生算子(通过它们的解析),以求一个m-增生算子和两个m-增生算子和的零。在所有情况下,我们证明了我们的VAM算法的强收敛性,并确定了迭代的极限为唯一的sunny非扩张缩回到算子的零集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The viscosity approximation method for accretive operators in Banach spaces
We extend the viscosity approximation method (VAM) to accretive operators (via their resolvents) in a uniformly convex and/or uniformly Gâteaux differentiable Banach space X to find a zero of an m-accretive operator and of the sum of two m-accretive operators. In all cases, we prove the strong convergence of our VAM algorithms and the limit of the iterates is identified as the unique sunny nonexpansive retraction onto to the zero set of the operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
3.40%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信