基于自旋轨道扭矩装置的随机多比特突触片上STDP学习

Gyuseong Kang, Yunho Jang, Jongsun Park
{"title":"基于自旋轨道扭矩装置的随机多比特突触片上STDP学习","authors":"Gyuseong Kang, Yunho Jang, Jongsun Park","doi":"10.1145/3218603.3218654","DOIUrl":null,"url":null,"abstract":"As a large number of neurons and synapses are needed in spike neural network (SNN) design, emerging devices have been employed to implement synapses and neurons. In this paper, we present a stochastic multi-bit spin orbit torque (SOT) memory based synapse, where only one SOT device is switched for potentiation and depression using modified Gray code. The modified Gray code based approach needs only N devices to represent 2N levels of synapse weights. Early read termination scheme is also adopted to reduce the power consumption of training process by turning off less associated neurons and its ADCs. For MNIST dataset, with comparable classification accuracy, the proposed SNN architecture using 3-bit synapse achieves 68.7% reduction of ADC overhead compared to the conventional 8-level synapse.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spin Orbit Torque Device based Stochastic Multi-bit Synapses for On-chip STDP Learning\",\"authors\":\"Gyuseong Kang, Yunho Jang, Jongsun Park\",\"doi\":\"10.1145/3218603.3218654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a large number of neurons and synapses are needed in spike neural network (SNN) design, emerging devices have been employed to implement synapses and neurons. In this paper, we present a stochastic multi-bit spin orbit torque (SOT) memory based synapse, where only one SOT device is switched for potentiation and depression using modified Gray code. The modified Gray code based approach needs only N devices to represent 2N levels of synapse weights. Early read termination scheme is also adopted to reduce the power consumption of training process by turning off less associated neurons and its ADCs. For MNIST dataset, with comparable classification accuracy, the proposed SNN architecture using 3-bit synapse achieves 68.7% reduction of ADC overhead compared to the conventional 8-level synapse.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于尖峰神经网络(SNN)的设计需要大量的神经元和突触,新兴的装置被用来实现突触和神经元。在本文中,我们提出了一种基于随机多比特自旋轨道扭矩(SOT)记忆的突触,其中只有一个SOT器件使用改进的Gray编码切换为增强和抑制。改进的基于Gray码的方法只需要N个设备来表示2N个层次的突触权重。通过关闭关联较少的神经元及其adc来降低训练过程的功耗。对于MNIST数据集,在分类精度相当的情况下,使用3位突触的SNN架构与传统的8位突触相比,ADC开销降低了68.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin Orbit Torque Device based Stochastic Multi-bit Synapses for On-chip STDP Learning
As a large number of neurons and synapses are needed in spike neural network (SNN) design, emerging devices have been employed to implement synapses and neurons. In this paper, we present a stochastic multi-bit spin orbit torque (SOT) memory based synapse, where only one SOT device is switched for potentiation and depression using modified Gray code. The modified Gray code based approach needs only N devices to represent 2N levels of synapse weights. Early read termination scheme is also adopted to reduce the power consumption of training process by turning off less associated neurons and its ADCs. For MNIST dataset, with comparable classification accuracy, the proposed SNN architecture using 3-bit synapse achieves 68.7% reduction of ADC overhead compared to the conventional 8-level synapse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信