定向凝固富W钴基高温合金的氧化和热腐蚀行为

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
Yue Zhou, C. Mo, Hong Wang
{"title":"定向凝固富W钴基高温合金的氧化和热腐蚀行为","authors":"Yue Zhou, C. Mo, Hong Wang","doi":"10.1051/METAL/2021033","DOIUrl":null,"url":null,"abstract":"In this study, isothermal and hot corrosion in molten 75 mass% Na2 SO4 +25 mass% NaCl at 900 °C was carried out on an W richen Co-based directionally solidified Co-27.53Cr-9.85W-10.29Ni-0.75Al superalloy. For comparison, K38G with composition of 16.34Cr-4Al-1.77Mo-3.81Ti-2.66W-8.38Co were also conducted under same condition. Isothermal oxidation indicates that Co-based superalloy forms a Co-oxide dispersion chromia scale. However, K38G forms a purer chromia scale due to higher weight percentage ratio of Cr to Al. Under molten Na2 SO4 -NaCl salts, the defects in Ni/Co oxide dispersion chromia layer make it feasible that the molten salt can penetrates along grain boundaries into the internal interface to form internal sulfides, which causes the spallation of scales and significantly decreases its hot corrosion resistance.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"13 1","pages":"313"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation and hot corrosion behavior of a directionally solidified W richen cobalt-based superalloy\",\"authors\":\"Yue Zhou, C. Mo, Hong Wang\",\"doi\":\"10.1051/METAL/2021033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, isothermal and hot corrosion in molten 75 mass% Na2 SO4 +25 mass% NaCl at 900 °C was carried out on an W richen Co-based directionally solidified Co-27.53Cr-9.85W-10.29Ni-0.75Al superalloy. For comparison, K38G with composition of 16.34Cr-4Al-1.77Mo-3.81Ti-2.66W-8.38Co were also conducted under same condition. Isothermal oxidation indicates that Co-based superalloy forms a Co-oxide dispersion chromia scale. However, K38G forms a purer chromia scale due to higher weight percentage ratio of Cr to Al. Under molten Na2 SO4 -NaCl salts, the defects in Ni/Co oxide dispersion chromia layer make it feasible that the molten salt can penetrates along grain boundaries into the internal interface to form internal sulfides, which causes the spallation of scales and significantly decreases its hot corrosion resistance.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"13 1\",\"pages\":\"313\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/METAL/2021033\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2021033","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种富W co基定向凝固Co-27.53Cr-9.85W-10.29Ni-0.75Al高温合金在75质量% Na2 SO4 +25质量% NaCl熔液中900℃的等温和热腐蚀。为了比较,在相同条件下也进行了成分为16.34Cr-4Al-1.77Mo-3.81Ti-2.66W-8.38Co的K38G。等温氧化表明,co基高温合金形成了Co-oxide弥散色标。而K38G由于Cr与Al的质量比较高,形成了更纯净的铬层。在Na2 SO4 -NaCl盐的熔融作用下,Ni/Co氧化物弥散铬层的缺陷使得熔盐沿晶界渗透到内部界面形成内部硫化物,导致了铬层的剥落,显著降低了其耐热腐蚀能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxidation and hot corrosion behavior of a directionally solidified W richen cobalt-based superalloy
In this study, isothermal and hot corrosion in molten 75 mass% Na2 SO4 +25 mass% NaCl at 900 °C was carried out on an W richen Co-based directionally solidified Co-27.53Cr-9.85W-10.29Ni-0.75Al superalloy. For comparison, K38G with composition of 16.34Cr-4Al-1.77Mo-3.81Ti-2.66W-8.38Co were also conducted under same condition. Isothermal oxidation indicates that Co-based superalloy forms a Co-oxide dispersion chromia scale. However, K38G forms a purer chromia scale due to higher weight percentage ratio of Cr to Al. Under molten Na2 SO4 -NaCl salts, the defects in Ni/Co oxide dispersion chromia layer make it feasible that the molten salt can penetrates along grain boundaries into the internal interface to form internal sulfides, which causes the spallation of scales and significantly decreases its hot corrosion resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信