用近点法理解Nesterov加速度

Kwangjun Ahn, S. Sra
{"title":"用近点法理解Nesterov加速度","authors":"Kwangjun Ahn, S. Sra","doi":"10.1137/1.9781611977066.9","DOIUrl":null,"url":null,"abstract":"The proximal point method (PPM) is a fundamental method in optimization that is often used as a building block for designing optimization algorithms. In this work, we use the PPM method to provide conceptually simple derivations along with convergence analyses of different versions of Nesterov’s accelerated gradient method (AGM). The key observation is that AGM is a simple approximation of PPM, which results in an elementary derivation of the update equations and stepsizes of AGM. This view also leads to a transparent and conceptually simple analysis of AGM’s convergence by using the analysis of PPM. The derivations also naturally extend to the strongly convex case. Ultimately, the results presented in this paper are of both didactic and conceptual value; they unify and explain existing variants of AGM while motivating other accelerated methods for practically relevant settings.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"236 1","pages":"117-130"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Understanding Nesterov's Acceleration via Proximal Point Method\",\"authors\":\"Kwangjun Ahn, S. Sra\",\"doi\":\"10.1137/1.9781611977066.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proximal point method (PPM) is a fundamental method in optimization that is often used as a building block for designing optimization algorithms. In this work, we use the PPM method to provide conceptually simple derivations along with convergence analyses of different versions of Nesterov’s accelerated gradient method (AGM). The key observation is that AGM is a simple approximation of PPM, which results in an elementary derivation of the update equations and stepsizes of AGM. This view also leads to a transparent and conceptually simple analysis of AGM’s convergence by using the analysis of PPM. The derivations also naturally extend to the strongly convex case. Ultimately, the results presented in this paper are of both didactic and conceptual value; they unify and explain existing variants of AGM while motivating other accelerated methods for practically relevant settings.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"236 1\",\"pages\":\"117-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977066.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近点法(PPM)是优化中的一种基本方法,经常被用作设计优化算法的基石。在这项工作中,我们使用PPM方法提供概念上简单的推导以及不同版本的Nesterov加速梯度方法(AGM)的收敛性分析。关键的观察是,AGM是PPM的简单近似值,这导致AGM的更新方程和步长的基本推导。通过使用PPM的分析,这种观点还导致了AGM收敛性的透明和概念上的简单分析。推导也自然地扩展到强凸情况。最后,本文提出的结果具有教学和概念价值;它们统一并解释了AGM的现有变体,同时为实际相关设置激发了其他加速方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Nesterov's Acceleration via Proximal Point Method
The proximal point method (PPM) is a fundamental method in optimization that is often used as a building block for designing optimization algorithms. In this work, we use the PPM method to provide conceptually simple derivations along with convergence analyses of different versions of Nesterov’s accelerated gradient method (AGM). The key observation is that AGM is a simple approximation of PPM, which results in an elementary derivation of the update equations and stepsizes of AGM. This view also leads to a transparent and conceptually simple analysis of AGM’s convergence by using the analysis of PPM. The derivations also naturally extend to the strongly convex case. Ultimately, the results presented in this paper are of both didactic and conceptual value; they unify and explain existing variants of AGM while motivating other accelerated methods for practically relevant settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信