{"title":"基于有效偏高斯隐场的空间逻辑回归模型","authors":"V. Tadayon, M. M. Saber","doi":"10.1007/s13253-022-00512-3","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"99 1","pages":"59 - 73"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatial Logistic Regression Model Based on a Valid Skew-Gaussian Latent Field\",\"authors\":\"V. Tadayon, M. M. Saber\",\"doi\":\"10.1007/s13253-022-00512-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":56336,\"journal\":{\"name\":\"Journal of Agricultural Biological and Environmental Statistics\",\"volume\":\"99 1\",\"pages\":\"59 - 73\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Biological and Environmental Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-022-00512-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-022-00512-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
期刊介绍:
The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.