基于样条法的二维线性平流方程的有限元方法

Kai Qu, Qiannan Dong, Chanjie Li, Feiyu Zhang
{"title":"基于样条法的二维线性平流方程的有限元方法","authors":"Kai Qu, Qiannan Dong, Chanjie Li, Feiyu Zhang","doi":"10.3934/DCDSS.2021056","DOIUrl":null,"url":null,"abstract":"A new method for some advection equations is derived and analyzed, where the finite element method is constructed by using spline. A proper spline subspace is discussed for satisfying boundary conditions. Meanwhile, in order to get more accuracy solutions, spline method is connected with finite element method. Furthermore, the stability and convergence are discussed rigorously. Two numerical experiments are also presented to verify the theoretical analysis.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element method for two-dimensional linear advection equations based on spline method\",\"authors\":\"Kai Qu, Qiannan Dong, Chanjie Li, Feiyu Zhang\",\"doi\":\"10.3934/DCDSS.2021056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for some advection equations is derived and analyzed, where the finite element method is constructed by using spline. A proper spline subspace is discussed for satisfying boundary conditions. Meanwhile, in order to get more accuracy solutions, spline method is connected with finite element method. Furthermore, the stability and convergence are discussed rigorously. Two numerical experiments are also presented to verify the theoretical analysis.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/DCDSS.2021056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/DCDSS.2021056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推导并分析了一种新的平流方程求解方法,该方法采用样条法构造有限元法。讨论了满足边界条件的适当样条子空间。同时,为了得到更精确的解,将样条法与有限元法相结合。并对该方法的稳定性和收敛性进行了严格的讨论。通过两个数值实验验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element method for two-dimensional linear advection equations based on spline method
A new method for some advection equations is derived and analyzed, where the finite element method is constructed by using spline. A proper spline subspace is discussed for satisfying boundary conditions. Meanwhile, in order to get more accuracy solutions, spline method is connected with finite element method. Furthermore, the stability and convergence are discussed rigorously. Two numerical experiments are also presented to verify the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信