Sallah Eldeen M. A. Sharief, Ibrahim M. H. Sanhoury
{"title":"采用极位控制的直流电机转速控制","authors":"Sallah Eldeen M. A. Sharief, Ibrahim M. H. Sanhoury","doi":"10.53332/kuej.v7i1.993","DOIUrl":null,"url":null,"abstract":"This paper describes a separately excited DC motor speed control using armature voltage control method, based on traditional Proportional- Integral- Derivative (PID) controller, and pole assignment, feedback control technique. The main objective of the proposed controller is to control the speed of a DC motor shaft rotation and overcome problems like overshoot, and increasing the system model order, that are caused by PID controller, with a step response. Results obtained with Ziegler – Nichols PID controller were compared with those obtained using pole placement. DC motor response contains a 24% overshoot with PID controller; compared with 0.0286% overshoot. In the response of pole placement controller, it is found that pole placement reduces system overshoot to 0.0015% ofthe closed loop system.","PeriodicalId":23461,"journal":{"name":"University of Khartoum Engineering Journal","volume":"290 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed Control of Direct Current Motor via Pole Placement Control\",\"authors\":\"Sallah Eldeen M. A. Sharief, Ibrahim M. H. Sanhoury\",\"doi\":\"10.53332/kuej.v7i1.993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a separately excited DC motor speed control using armature voltage control method, based on traditional Proportional- Integral- Derivative (PID) controller, and pole assignment, feedback control technique. The main objective of the proposed controller is to control the speed of a DC motor shaft rotation and overcome problems like overshoot, and increasing the system model order, that are caused by PID controller, with a step response. Results obtained with Ziegler – Nichols PID controller were compared with those obtained using pole placement. DC motor response contains a 24% overshoot with PID controller; compared with 0.0286% overshoot. In the response of pole placement controller, it is found that pole placement reduces system overshoot to 0.0015% ofthe closed loop system.\",\"PeriodicalId\":23461,\"journal\":{\"name\":\"University of Khartoum Engineering Journal\",\"volume\":\"290 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"University of Khartoum Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53332/kuej.v7i1.993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Khartoum Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53332/kuej.v7i1.993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speed Control of Direct Current Motor via Pole Placement Control
This paper describes a separately excited DC motor speed control using armature voltage control method, based on traditional Proportional- Integral- Derivative (PID) controller, and pole assignment, feedback control technique. The main objective of the proposed controller is to control the speed of a DC motor shaft rotation and overcome problems like overshoot, and increasing the system model order, that are caused by PID controller, with a step response. Results obtained with Ziegler – Nichols PID controller were compared with those obtained using pole placement. DC motor response contains a 24% overshoot with PID controller; compared with 0.0286% overshoot. In the response of pole placement controller, it is found that pole placement reduces system overshoot to 0.0015% ofthe closed loop system.