关于遗忘拓扑协指数的一些结果

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
M. Azari, Farzaneh Falahati-Nezhed
{"title":"关于遗忘拓扑协指数的一些结果","authors":"M. Azari, Farzaneh Falahati-Nezhed","doi":"10.22052/IJMC.2019.174722.1432","DOIUrl":null,"url":null,"abstract":"The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalities for the forgotten topological coindex in terms of some graph parameters such as the order, size, number of pendent vertices, minimal and maximal vertex degrees, and minimal non-pendent vertex degree. We also study the relation between this invariant and some well-known graph invariants such as the Zagreb indices and coindices, multiplicative Zagreb indices and coindices, Zagreb eccentricity indices, eccentric connectivity index and coindex, and total eccentricity. Exact formulae for computing the forgotten topological coindex of double graphs and extended double cover of a given graph are also proposed.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":"6 1","pages":"307-318"},"PeriodicalIF":1.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Some Results on Forgotten Topological Coindex\",\"authors\":\"M. Azari, Farzaneh Falahati-Nezhed\",\"doi\":\"10.22052/IJMC.2019.174722.1432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalities for the forgotten topological coindex in terms of some graph parameters such as the order, size, number of pendent vertices, minimal and maximal vertex degrees, and minimal non-pendent vertex degree. We also study the relation between this invariant and some well-known graph invariants such as the Zagreb indices and coindices, multiplicative Zagreb indices and coindices, Zagreb eccentricity indices, eccentric connectivity index and coindex, and total eccentricity. Exact formulae for computing the forgotten topological coindex of double graphs and extended double cover of a given graph are also proposed.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":\"6 1\",\"pages\":\"307-318\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2019.174722.1432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2019.174722.1432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

对于简单连通图G,定义了遗忘拓扑协指数(兰州指数)为G的所有非相邻顶点对uv上的du2+dv2项之和,其中du表示顶点u在G中的度数。本文给出了关于遗忘拓扑协指数的一些不等式,这些不等式涉及图的一些参数,如垂顶点的顺序、大小、数量、最小和最大顶点度数以及最小非垂顶点度数。我们还研究了该不变量与一些众所周知的图不变量之间的关系,如萨格勒布指数和协指数、乘法萨格勒布指数和协指数、萨格勒布偏心率指数、偏心连通性指数和协指数以及总偏心率。给出了计算双图的遗忘拓扑协指数和给定图的扩展双覆盖的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results on Forgotten Topological Coindex
The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalities for the forgotten topological coindex in terms of some graph parameters such as the order, size, number of pendent vertices, minimal and maximal vertex degrees, and minimal non-pendent vertex degree. We also study the relation between this invariant and some well-known graph invariants such as the Zagreb indices and coindices, multiplicative Zagreb indices and coindices, Zagreb eccentricity indices, eccentric connectivity index and coindex, and total eccentricity. Exact formulae for computing the forgotten topological coindex of double graphs and extended double cover of a given graph are also proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信