基于1范数、酉约束和Cayley变换的频域BSS方法

S. Emura, H. Sawada, S. Araki, N. Harada
{"title":"基于1范数、酉约束和Cayley变换的频域BSS方法","authors":"S. Emura, H. Sawada, S. Araki, N. Harada","doi":"10.1109/ICASSP40776.2020.9053757","DOIUrl":null,"url":null,"abstract":"We propose a frequency-domain blind source separation method that uses (a) the ℓ1 norm of orthonormal vectors of estimated source signals as a sparsity measure and (b) Cayley transform for optimizing the objective function under the unitary constraint in the Riemannian geometry approach. The orthonormal vectors of estimated source signals, obtained by the sphering of observed mixed signals and the unitary constraint on the separation filters, enables us to use the ℓ1 norm properly as a sparsity measure. The Cayley transform enables us to handle the geometrical aspects of the unitary constraint efficiently. According to the simulation of a two-channel case, the proposed method achieved a 20-dB improvement in the source-to-interference ratio in a room with a reverberation time of T60 = 300ms.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"48 1","pages":"111-115"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Frequency-Domain BSS Method Based on ℓ1 Norm, Unitary Constraint, and Cayley Transform\",\"authors\":\"S. Emura, H. Sawada, S. Araki, N. Harada\",\"doi\":\"10.1109/ICASSP40776.2020.9053757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a frequency-domain blind source separation method that uses (a) the ℓ1 norm of orthonormal vectors of estimated source signals as a sparsity measure and (b) Cayley transform for optimizing the objective function under the unitary constraint in the Riemannian geometry approach. The orthonormal vectors of estimated source signals, obtained by the sphering of observed mixed signals and the unitary constraint on the separation filters, enables us to use the ℓ1 norm properly as a sparsity measure. The Cayley transform enables us to handle the geometrical aspects of the unitary constraint efficiently. According to the simulation of a two-channel case, the proposed method achieved a 20-dB improvement in the source-to-interference ratio in a room with a reverberation time of T60 = 300ms.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"48 1\",\"pages\":\"111-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种频域盲源分离方法,该方法使用(a)估计的源信号的正交向量的v1范数作为稀疏度度量,(b)在黎曼几何方法的酉约束下使用Cayley变换优化目标函数。由观测到的混合信号的球化和分离滤波器的统一约束得到的估计源信号的标准正交向量,使我们能够适当地使用l1范数作为稀疏度度量。Cayley变换使我们能够有效地处理酉约束的几何方面。通过对双通道情况的仿真,在混响时间为T60 = 300ms的房间中,提出的方法使源干扰比提高了20 db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Frequency-Domain BSS Method Based on ℓ1 Norm, Unitary Constraint, and Cayley Transform
We propose a frequency-domain blind source separation method that uses (a) the ℓ1 norm of orthonormal vectors of estimated source signals as a sparsity measure and (b) Cayley transform for optimizing the objective function under the unitary constraint in the Riemannian geometry approach. The orthonormal vectors of estimated source signals, obtained by the sphering of observed mixed signals and the unitary constraint on the separation filters, enables us to use the ℓ1 norm properly as a sparsity measure. The Cayley transform enables us to handle the geometrical aspects of the unitary constraint efficiently. According to the simulation of a two-channel case, the proposed method achieved a 20-dB improvement in the source-to-interference ratio in a room with a reverberation time of T60 = 300ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信