{"title":"初等数论问题。第六部分","authors":"Adam Grabowski","doi":"10.2478/forma-2022-0019","DOIUrl":null,"url":null,"abstract":"Summary This paper reports on the formalization in Mizar system [1], [2] of ten selected problems from W. Sierpinski’s book “250 Problems in Elementary Number Theory” [7] (see [6] for details of this concrete dataset). This article is devoted mainly to arithmetic progressions: problems 52, 54, 55, 56, 60, 64, 70, 71, and 73 belong to the chapter “Arithmetic Progressions”, and problem 50 is from “Relatively Prime Numbers”.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"278 1","pages":"235 - 244"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Elementary Number Theory Problems. Part VI\",\"authors\":\"Adam Grabowski\",\"doi\":\"10.2478/forma-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary This paper reports on the formalization in Mizar system [1], [2] of ten selected problems from W. Sierpinski’s book “250 Problems in Elementary Number Theory” [7] (see [6] for details of this concrete dataset). This article is devoted mainly to arithmetic progressions: problems 52, 54, 55, 56, 60, 64, 70, 71, and 73 belong to the chapter “Arithmetic Progressions”, and problem 50 is from “Relatively Prime Numbers”.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":\"278 1\",\"pages\":\"235 - 244\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Summary This paper reports on the formalization in Mizar system [1], [2] of ten selected problems from W. Sierpinski’s book “250 Problems in Elementary Number Theory” [7] (see [6] for details of this concrete dataset). This article is devoted mainly to arithmetic progressions: problems 52, 54, 55, 56, 60, 64, 70, 71, and 73 belong to the chapter “Arithmetic Progressions”, and problem 50 is from “Relatively Prime Numbers”.
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.