分子筛分子筛对氮的吸附:实验与模拟研究

Erfan Tooraji, A. Ghaemi
{"title":"分子筛分子筛对氮的吸附:实验与模拟研究","authors":"Erfan Tooraji, A. Ghaemi","doi":"10.22050/IJOGST.2019.186102.1506","DOIUrl":null,"url":null,"abstract":"Separation of nitrogen from a gaseous mixture is required for many industrial processes. In this study, the adsorption of nitrogen on zeolite 4A was investigated in terms of different adsorption isotherm models and kinetics. An increase in the initial pressure from 1 to 9 bar increases the amount of adsorbed nitrogen from 6.730 to 376.030 mg/(g adsorbent). The amount of adsorbed nitrogen increased from 7.321 to 40.594 mg/(g adsorbent) by raising the temperature from 298 to 333 K at a pressure equal to one bar; however, it then dropped to 15.767 mg/(g adsorbent) when temperature decreased to 353 K. Increasing the amount of the adsorbent from 1 to 4 g decreased the specific adsorption from 67.565 to 21.008 mg/(g adsorbent) at a temperature of 298 K and a pressure of 3 bar. Furthermore, it was found that the nitrogen adsorption experimental equilibrium data are consistent with Sips and Langmuir-Freundlich models. The highest overlap was achieved through second order and Ritchie’s models.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"254 1","pages":"47-67"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen Adsorption on Molecular Sieve Zeolites: An Experimental and Modeling Study\",\"authors\":\"Erfan Tooraji, A. Ghaemi\",\"doi\":\"10.22050/IJOGST.2019.186102.1506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separation of nitrogen from a gaseous mixture is required for many industrial processes. In this study, the adsorption of nitrogen on zeolite 4A was investigated in terms of different adsorption isotherm models and kinetics. An increase in the initial pressure from 1 to 9 bar increases the amount of adsorbed nitrogen from 6.730 to 376.030 mg/(g adsorbent). The amount of adsorbed nitrogen increased from 7.321 to 40.594 mg/(g adsorbent) by raising the temperature from 298 to 333 K at a pressure equal to one bar; however, it then dropped to 15.767 mg/(g adsorbent) when temperature decreased to 353 K. Increasing the amount of the adsorbent from 1 to 4 g decreased the specific adsorption from 67.565 to 21.008 mg/(g adsorbent) at a temperature of 298 K and a pressure of 3 bar. Furthermore, it was found that the nitrogen adsorption experimental equilibrium data are consistent with Sips and Langmuir-Freundlich models. The highest overlap was achieved through second order and Ritchie’s models.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"254 1\",\"pages\":\"47-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2019.186102.1506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2019.186102.1506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多工业过程都需要从气体混合物中分离氮气。本研究从不同的吸附等温线模型和动力学角度研究了氮在4A沸石上的吸附。当初始压力从1 bar增加到9 bar时,吸附的氮量从6.730 mg/ g增加到376.030 mg/ g吸附剂。在1 bar的压力下,温度由298 K提高到333 K,吸附量由7.321 mg/(g吸附剂)增加到40.594 mg/(g吸附剂);当温度降至353 K时,吸附剂的吸附量降至15.767 mg/(g)。在温度298 K、压力3 bar条件下,吸附剂用量由1增加到4 g,吸附比由67.565 mg/(g吸附剂)降低到21.008 mg/(g吸附剂)。氮吸附实验平衡数据符合Sips模型和Langmuir-Freundlich模型。最大的重叠是通过二阶和里奇的模型实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen Adsorption on Molecular Sieve Zeolites: An Experimental and Modeling Study
Separation of nitrogen from a gaseous mixture is required for many industrial processes. In this study, the adsorption of nitrogen on zeolite 4A was investigated in terms of different adsorption isotherm models and kinetics. An increase in the initial pressure from 1 to 9 bar increases the amount of adsorbed nitrogen from 6.730 to 376.030 mg/(g adsorbent). The amount of adsorbed nitrogen increased from 7.321 to 40.594 mg/(g adsorbent) by raising the temperature from 298 to 333 K at a pressure equal to one bar; however, it then dropped to 15.767 mg/(g adsorbent) when temperature decreased to 353 K. Increasing the amount of the adsorbent from 1 to 4 g decreased the specific adsorption from 67.565 to 21.008 mg/(g adsorbent) at a temperature of 298 K and a pressure of 3 bar. Furthermore, it was found that the nitrogen adsorption experimental equilibrium data are consistent with Sips and Langmuir-Freundlich models. The highest overlap was achieved through second order and Ritchie’s models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信