使用加速度计和机器学习的滑板技巧分类器的开发

Nicholas Corrêa, Julio Cesar Marques de Lima, T. Russomano, M. A. D. Santos
{"title":"使用加速度计和机器学习的滑板技巧分类器的开发","authors":"Nicholas Corrêa, Julio Cesar Marques de Lima, T. Russomano, M. A. D. Santos","doi":"10.1590/2446-4740.04717","DOIUrl":null,"url":null,"abstract":"Introduction: Skateboarding is one of the most popular cultures in Brazil, with more than 8.5 million skateboarders. Nowadays, the discipline of street skating has gained recognition among other more classical sports and awaits its debut at the Tokyo 2020 Summer Olympic Games. This study aimed to explore the state-of-the-art for inertial measurement unit (IMU) use in skateboarding trick detection, and to develop new classification methods using supervised machine learning and artificial neural networks (ANN). Methods: State-of-the-art knowledge regarding motion detection in skateboarding was used to generate 543 artificial acceleration signals through signal modeling, corresponding to 181 flat ground tricks divided into five classes (NOLLIE, NSHOV, FLIP, SHOV, OLLIE). The classifier consisted of a multilayer feed-forward neural network created with three layers and a supervised learning algorithm (backpropagation). Results: The use of ANNs trained specifically for each measured axis of acceleration resulted in error percentages inferior to 0.05%, with a computational efficiency that makes real-time application possible. Conclusion: Machine learning can be a useful technique for classifying skateboarding flat ground tricks, assuming that the classifiers are properly constructed and trained, and the acceleration signals are preprocessed correctly.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Development of a skateboarding trick classifier using accelerometry and machine learning\",\"authors\":\"Nicholas Corrêa, Julio Cesar Marques de Lima, T. Russomano, M. A. D. Santos\",\"doi\":\"10.1590/2446-4740.04717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Skateboarding is one of the most popular cultures in Brazil, with more than 8.5 million skateboarders. Nowadays, the discipline of street skating has gained recognition among other more classical sports and awaits its debut at the Tokyo 2020 Summer Olympic Games. This study aimed to explore the state-of-the-art for inertial measurement unit (IMU) use in skateboarding trick detection, and to develop new classification methods using supervised machine learning and artificial neural networks (ANN). Methods: State-of-the-art knowledge regarding motion detection in skateboarding was used to generate 543 artificial acceleration signals through signal modeling, corresponding to 181 flat ground tricks divided into five classes (NOLLIE, NSHOV, FLIP, SHOV, OLLIE). The classifier consisted of a multilayer feed-forward neural network created with three layers and a supervised learning algorithm (backpropagation). Results: The use of ANNs trained specifically for each measured axis of acceleration resulted in error percentages inferior to 0.05%, with a computational efficiency that makes real-time application possible. Conclusion: Machine learning can be a useful technique for classifying skateboarding flat ground tricks, assuming that the classifiers are properly constructed and trained, and the acceleration signals are preprocessed correctly.\",\"PeriodicalId\":8487,\"journal\":{\"name\":\"arXiv: Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2446-4740.04717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2446-4740.04717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

滑板是巴西最受欢迎的文化之一,有超过850万的滑板爱好者。如今,街头滑冰已经在其他古典运动中获得了认可,并等待在2020年东京夏季奥运会上首次亮相。本研究旨在探索惯性测量单元(IMU)在滑板技巧检测中的最新应用,并利用监督式机器学习和人工神经网络(ANN)开发新的分类方法。方法:利用最新的滑板运动检测知识,通过信号建模生成543个人工加速度信号,对应181个平地动作,分为5类(NOLLIE、NSHOV、FLIP、SHOV、OLLIE)。该分类器由一个三层的多层前馈神经网络和一个监督学习算法(反向传播)组成。结果:使用针对每个测量加速度轴专门训练的人工神经网络导致误差百分比低于0.05%,计算效率使实时应用成为可能。结论:机器学习可以成为分类滑板平地技巧的一种有用的技术,前提是分类器是正确构建和训练的,并且加速度信号是正确预处理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a skateboarding trick classifier using accelerometry and machine learning
Introduction: Skateboarding is one of the most popular cultures in Brazil, with more than 8.5 million skateboarders. Nowadays, the discipline of street skating has gained recognition among other more classical sports and awaits its debut at the Tokyo 2020 Summer Olympic Games. This study aimed to explore the state-of-the-art for inertial measurement unit (IMU) use in skateboarding trick detection, and to develop new classification methods using supervised machine learning and artificial neural networks (ANN). Methods: State-of-the-art knowledge regarding motion detection in skateboarding was used to generate 543 artificial acceleration signals through signal modeling, corresponding to 181 flat ground tricks divided into five classes (NOLLIE, NSHOV, FLIP, SHOV, OLLIE). The classifier consisted of a multilayer feed-forward neural network created with three layers and a supervised learning algorithm (backpropagation). Results: The use of ANNs trained specifically for each measured axis of acceleration resulted in error percentages inferior to 0.05%, with a computational efficiency that makes real-time application possible. Conclusion: Machine learning can be a useful technique for classifying skateboarding flat ground tricks, assuming that the classifiers are properly constructed and trained, and the acceleration signals are preprocessed correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信