表面能和弹性介质对嵌入纳米棒扭转振动行为的影响

Q3 Engineering
R. Nazemnezhad
{"title":"表面能和弹性介质对嵌入纳米棒扭转振动行为的影响","authors":"R. Nazemnezhad","doi":"10.5829/ije.2018.31.03c.13","DOIUrl":null,"url":null,"abstract":"In this paper surface energy and elastic medium effects on torsional vibrational behavior of nanorods are studied. The surface elasticity theory is used to consider the surface energy effects and the elastic medium is modeled as torsional springs attached to the nanorod. At the next step, Hamilton’s principle is utilized to derive governing equations and boundary conditions. Then, with the aid of an analytical method, natural frequencies are obtained and effects of various parameters on torsional frequencies are studied in details. It is concluded from the present study that the surface energy can make nanorods unstable depending on the nanorod dimension and frequency number. Results of the present study can be useful in design of nanoelectromechanical systems like drive shafts.","PeriodicalId":14066,"journal":{"name":"International Journal of Engineering - Transactions C: Aspects","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Surface Energy and Elastic Medium Effects on Torsional Vibrational Behavior of Embedded Nanorods\",\"authors\":\"R. Nazemnezhad\",\"doi\":\"10.5829/ije.2018.31.03c.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper surface energy and elastic medium effects on torsional vibrational behavior of nanorods are studied. The surface elasticity theory is used to consider the surface energy effects and the elastic medium is modeled as torsional springs attached to the nanorod. At the next step, Hamilton’s principle is utilized to derive governing equations and boundary conditions. Then, with the aid of an analytical method, natural frequencies are obtained and effects of various parameters on torsional frequencies are studied in details. It is concluded from the present study that the surface energy can make nanorods unstable depending on the nanorod dimension and frequency number. Results of the present study can be useful in design of nanoelectromechanical systems like drive shafts.\",\"PeriodicalId\":14066,\"journal\":{\"name\":\"International Journal of Engineering - Transactions C: Aspects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering - Transactions C: Aspects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2018.31.03c.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering - Transactions C: Aspects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2018.31.03c.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了表面能和弹性介质对纳米棒扭转振动行为的影响。采用表面弹性理论考虑表面能效应,并将弹性介质建模为附着在纳米棒上的扭转弹簧。下一步,利用汉密尔顿原理推导控制方程和边界条件。在此基础上,利用解析法得到了固有频率,并详细研究了各参数对扭转频率的影响。研究结果表明,纳米棒的表面能与纳米棒的尺寸和频率数有关,从而导致纳米棒的不稳定。研究结果可为驱动轴等纳米机电系统的设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface Energy and Elastic Medium Effects on Torsional Vibrational Behavior of Embedded Nanorods
In this paper surface energy and elastic medium effects on torsional vibrational behavior of nanorods are studied. The surface elasticity theory is used to consider the surface energy effects and the elastic medium is modeled as torsional springs attached to the nanorod. At the next step, Hamilton’s principle is utilized to derive governing equations and boundary conditions. Then, with the aid of an analytical method, natural frequencies are obtained and effects of various parameters on torsional frequencies are studied in details. It is concluded from the present study that the surface energy can make nanorods unstable depending on the nanorod dimension and frequency number. Results of the present study can be useful in design of nanoelectromechanical systems like drive shafts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信