投影流形上厄密杨-米尔斯连接模空间的复代数紧化

IF 2 1区 数学
D. Greb, Benjamin Sibley, M. Toma, R. Wentworth
{"title":"投影流形上厄密杨-米尔斯连接模空间的复代数紧化","authors":"D. Greb, Benjamin Sibley, M. Toma, R. Wentworth","doi":"10.2140/gt.2021.25.1719","DOIUrl":null,"url":null,"abstract":"In this paper we study the relationship between three compactifications of the moduli space of Hermitian-Yang-Mills connections on a fixed Hermitian vector bundle over a projective algebraic manifold of arbitrary dimension. Via the Donaldson-Uhlenbeck-Yau theorem, this space is analytically isomorphic to the moduli space of stable holomorphic vector bundles, and as such it admits an algebraic compactification by Gieseker-Maruyama semistable torsion-free sheaves. A recent construction due to the first and third authors gives another compactification as a moduli space of slope semistable sheaves. In the present article, following fundamental work of Tian generalising the analysis of Uhlenbeck and Donaldson in complex dimension two, we define a gauge theoretic compactification by adding certain ideal connections at the boundary. Extending work of Jun Li in the case of bundles on algebraic surfaces, we exhibit comparison maps from the sheaf theoretic compactifications and prove their continuity. The continuity, together with a delicate analysis of the fibres of the map from the moduli space of slope semistable sheaves allows us to endow the gauge theoretic compactification with the structure of a complex analytic space.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Complex algebraic compactifications\\nof the moduli space of Hermitian Yang–Mills connections on a projective\\nmanifold\",\"authors\":\"D. Greb, Benjamin Sibley, M. Toma, R. Wentworth\",\"doi\":\"10.2140/gt.2021.25.1719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the relationship between three compactifications of the moduli space of Hermitian-Yang-Mills connections on a fixed Hermitian vector bundle over a projective algebraic manifold of arbitrary dimension. Via the Donaldson-Uhlenbeck-Yau theorem, this space is analytically isomorphic to the moduli space of stable holomorphic vector bundles, and as such it admits an algebraic compactification by Gieseker-Maruyama semistable torsion-free sheaves. A recent construction due to the first and third authors gives another compactification as a moduli space of slope semistable sheaves. In the present article, following fundamental work of Tian generalising the analysis of Uhlenbeck and Donaldson in complex dimension two, we define a gauge theoretic compactification by adding certain ideal connections at the boundary. Extending work of Jun Li in the case of bundles on algebraic surfaces, we exhibit comparison maps from the sheaf theoretic compactifications and prove their continuity. The continuity, together with a delicate analysis of the fibres of the map from the moduli space of slope semistable sheaves allows us to endow the gauge theoretic compactification with the structure of a complex analytic space.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.1719\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.1719","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了任意维射影代数流形上固定厄米特向量束上赫尔米特-杨-米尔斯连接模空间的三个紧化关系。通过Donaldson-Uhlenbeck-Yau定理,该空间与稳定全纯向量束的模空间解析同构,因此它允许Gieseker-Maruyama半稳定无扭束的代数紧化。由于第一和第三作者最近的一个构造给出了另一个紧化作为斜坡半稳定轮的模空间。本文在Tian对复二维Uhlenbeck和Donaldson的分析进行推广的基础上,通过在边界处添加某些理想连接来定义规范论紧化。推广李军在代数曲面上束的情况下的工作,给出了束理论紧化的比较映射,并证明了它们的连续性。这种连续性,加上对斜坡半稳定轮轴模空间中映射纤维的精细分析,使我们能够赋予规范理论紧化以复解析空间的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex algebraic compactifications of the moduli space of Hermitian Yang–Mills connections on a projective manifold
In this paper we study the relationship between three compactifications of the moduli space of Hermitian-Yang-Mills connections on a fixed Hermitian vector bundle over a projective algebraic manifold of arbitrary dimension. Via the Donaldson-Uhlenbeck-Yau theorem, this space is analytically isomorphic to the moduli space of stable holomorphic vector bundles, and as such it admits an algebraic compactification by Gieseker-Maruyama semistable torsion-free sheaves. A recent construction due to the first and third authors gives another compactification as a moduli space of slope semistable sheaves. In the present article, following fundamental work of Tian generalising the analysis of Uhlenbeck and Donaldson in complex dimension two, we define a gauge theoretic compactification by adding certain ideal connections at the boundary. Extending work of Jun Li in the case of bundles on algebraic surfaces, we exhibit comparison maps from the sheaf theoretic compactifications and prove their continuity. The continuity, together with a delicate analysis of the fibres of the map from the moduli space of slope semistable sheaves allows us to endow the gauge theoretic compactification with the structure of a complex analytic space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信