Web表知识抽取技术综述

Parvin Keshvari-Fini, Behrooz Janfada, B. Minaei-Bidgoli
{"title":"Web表知识抽取技术综述","authors":"Parvin Keshvari-Fini, Behrooz Janfada, B. Minaei-Bidgoli","doi":"10.1109/ICWR.2019.8765271","DOIUrl":null,"url":null,"abstract":"Web tables are worthy sources of relational information. The number of high-quality tables with useful relational information is rapidly increasing to hundreds of millions. Some search engines usually ignore meanings of entities and relationships in indexing thus they have poor performance in tabular data to a suitable field of research is the transformation of web tables into machine-readable knowledge. We first study overview of the use of web tables in different domains then focus on understanding knowledge of web tables. The results indicate that by combining old Information Extraction techniques, and table features and general inference models can extract Knowledge from web tables.","PeriodicalId":6680,"journal":{"name":"2019 5th International Conference on Web Research (ICWR)","volume":"157 1","pages":"123-127"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Survey on Knowledge Extraction Techniques for Web Tables\",\"authors\":\"Parvin Keshvari-Fini, Behrooz Janfada, B. Minaei-Bidgoli\",\"doi\":\"10.1109/ICWR.2019.8765271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web tables are worthy sources of relational information. The number of high-quality tables with useful relational information is rapidly increasing to hundreds of millions. Some search engines usually ignore meanings of entities and relationships in indexing thus they have poor performance in tabular data to a suitable field of research is the transformation of web tables into machine-readable knowledge. We first study overview of the use of web tables in different domains then focus on understanding knowledge of web tables. The results indicate that by combining old Information Extraction techniques, and table features and general inference models can extract Knowledge from web tables.\",\"PeriodicalId\":6680,\"journal\":{\"name\":\"2019 5th International Conference on Web Research (ICWR)\",\"volume\":\"157 1\",\"pages\":\"123-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Web Research (ICWR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWR.2019.8765271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR.2019.8765271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Web表是有价值的关系信息来源。具有有用关系信息的高质量表的数量正在迅速增加到数亿。一些搜索引擎通常在索引中忽略实体的含义和关系,因此它们在表格数据中表现不佳,一个合适的研究领域是将web表格转换为机器可读的知识。我们首先研究了web表在不同领域的使用概况,然后重点了解web表的知识。结果表明,将传统的信息抽取技术、表特征和通用推理模型相结合,可以从web表中提取知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Knowledge Extraction Techniques for Web Tables
Web tables are worthy sources of relational information. The number of high-quality tables with useful relational information is rapidly increasing to hundreds of millions. Some search engines usually ignore meanings of entities and relationships in indexing thus they have poor performance in tabular data to a suitable field of research is the transformation of web tables into machine-readable knowledge. We first study overview of the use of web tables in different domains then focus on understanding knowledge of web tables. The results indicate that by combining old Information Extraction techniques, and table features and general inference models can extract Knowledge from web tables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信