在外部存储器中寻找天际线

Cheng Sheng, Yufei Tao
{"title":"在外部存储器中寻找天际线","authors":"Cheng Sheng, Yufei Tao","doi":"10.1145/1989284.1989298","DOIUrl":null,"url":null,"abstract":"We consider the <i>skyline problem</i> (a.k.a. the <i>maxima problem</i>), which has been extensively studied in the database community. The input is a set <i>P</i> of <i>d</i>-dimensional points. A point <i>dominates</i> another if the former has a lower coordinate than the latter on every dimension. The goal is to find the <i>skyline</i>, which is the set of points <i>p</i> ∈ <i>P</i> such that <i>p</i> is not dominated by any other data point. In the external-memory model, the 2-d version of the problem is known to be solvable in <i>O</i>((<i>N</i>/<i>B</i>)log<i><sub>M/B</sub></i>(<i>N</i>/<i>B</i>)) I/Os, where <i>N</i> is the cardinality of <i>P</i>, <i>B</i> the size of a disk block, and <i>M</i> the capacity of main memory. For fixed <i>d</i> ≥ 3, we present an algorithm with I/O-complexity <i>O</i>((<i>N</i>/<i>B</i>)log<i>d</i>-2/<i>M</i>/<i>B</i>(<i>N</i>/<i>B</i>)). Previously, the best solution was adapted from an in-memory algorithm, and requires <i>O</i>((<i>N</i>/<i>B</i>) log<i>d</i>-2/2(<i>N</i>/<i>M</i>)) I/Os.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"12 1","pages":"107-116"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"On finding skylines in external memory\",\"authors\":\"Cheng Sheng, Yufei Tao\",\"doi\":\"10.1145/1989284.1989298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the <i>skyline problem</i> (a.k.a. the <i>maxima problem</i>), which has been extensively studied in the database community. The input is a set <i>P</i> of <i>d</i>-dimensional points. A point <i>dominates</i> another if the former has a lower coordinate than the latter on every dimension. The goal is to find the <i>skyline</i>, which is the set of points <i>p</i> ∈ <i>P</i> such that <i>p</i> is not dominated by any other data point. In the external-memory model, the 2-d version of the problem is known to be solvable in <i>O</i>((<i>N</i>/<i>B</i>)log<i><sub>M/B</sub></i>(<i>N</i>/<i>B</i>)) I/Os, where <i>N</i> is the cardinality of <i>P</i>, <i>B</i> the size of a disk block, and <i>M</i> the capacity of main memory. For fixed <i>d</i> ≥ 3, we present an algorithm with I/O-complexity <i>O</i>((<i>N</i>/<i>B</i>)log<i>d</i>-2/<i>M</i>/<i>B</i>(<i>N</i>/<i>B</i>)). Previously, the best solution was adapted from an in-memory algorithm, and requires <i>O</i>((<i>N</i>/<i>B</i>) log<i>d</i>-2/2(<i>N</i>/<i>M</i>)) I/Os.\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"12 1\",\"pages\":\"107-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1989284.1989298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1989284.1989298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

我们考虑的是天际线问题(又称极大值问题),这个问题在数据库界已经得到了广泛的研究。输入是d维点的集合P。如果一个点在每个维度上的坐标都比另一个点低,那么它就优于另一个点。目标是找到天际线,它是点p∈p的集合,使得p不受任何其他数据点的支配。在外部存储器模型中,已知该问题的二维版本可以在O((N/B)logM/B(N/B)) I/O中解决,其中N是P的基数,B是磁盘块的大小,M是主存储器的容量。对于固定d≥3,我们给出了一个I/O复杂度为O((N/B)log -2/M/B(N/B))的算法。以前,最佳解决方案是采用内存算法,需要O((N/B) log -2/2(N/M))个I/O。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On finding skylines in external memory
We consider the skyline problem (a.k.a. the maxima problem), which has been extensively studied in the database community. The input is a set P of d-dimensional points. A point dominates another if the former has a lower coordinate than the latter on every dimension. The goal is to find the skyline, which is the set of points pP such that p is not dominated by any other data point. In the external-memory model, the 2-d version of the problem is known to be solvable in O((N/B)logM/B(N/B)) I/Os, where N is the cardinality of P, B the size of a disk block, and M the capacity of main memory. For fixed d ≥ 3, we present an algorithm with I/O-complexity O((N/B)logd-2/M/B(N/B)). Previously, the best solution was adapted from an in-memory algorithm, and requires O((N/B) logd-2/2(N/M)) I/Os.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信