用于共振纳米光子离子生产的定制硅纳米柱阵列

IF 2.781
Bennett N. Walker, Jessica A. Stolee, Deanna L. Pickel, S. Retterer, A. Vertes
{"title":"用于共振纳米光子离子生产的定制硅纳米柱阵列","authors":"Bennett N. Walker, Jessica A. Stolee, Deanna L. Pickel, S. Retterer, A. Vertes","doi":"10.1021/JP9110103","DOIUrl":null,"url":null,"abstract":"Nanostructures that have dimensions commensurate with the wavelength of the electromagnetic radiation exhibit near-field effects and, as optical antennas, can couple laser radiation to the local environment. Laser-induced silicon microcolumn arrays behave as nanophotonic ion sources that can be modulated by rotating the plane of light polarization. However, the limited range of surface morphologies available for these substrates makes it difficult to study the underlying mechanism that governs ion production. Here we demonstrate that nanopost arrays (NAPAs) can be tailored to exhibit resonant ion production. Ion yields from posts with subwavelength diameter show sharp resonances at high aspect ratios. The resonant enhancement in ion intensities can be modulated by adjusting the periodicity. In addition to strong molecular ion formation, the presence of high-energy fragmentation channels is observed. Ion yields from NAPAs exhibit dramatic differences for p- and s-polarized laser beams, indicating that ener...","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"10 1","pages":"4835-4840"},"PeriodicalIF":2.7810,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Tailored Silicon Nanopost Arrays for Resonant Nanophotonic Ion Production\",\"authors\":\"Bennett N. Walker, Jessica A. Stolee, Deanna L. Pickel, S. Retterer, A. Vertes\",\"doi\":\"10.1021/JP9110103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanostructures that have dimensions commensurate with the wavelength of the electromagnetic radiation exhibit near-field effects and, as optical antennas, can couple laser radiation to the local environment. Laser-induced silicon microcolumn arrays behave as nanophotonic ion sources that can be modulated by rotating the plane of light polarization. However, the limited range of surface morphologies available for these substrates makes it difficult to study the underlying mechanism that governs ion production. Here we demonstrate that nanopost arrays (NAPAs) can be tailored to exhibit resonant ion production. Ion yields from posts with subwavelength diameter show sharp resonances at high aspect ratios. The resonant enhancement in ion intensities can be modulated by adjusting the periodicity. In addition to strong molecular ion formation, the presence of high-energy fragmentation channels is observed. Ion yields from NAPAs exhibit dramatic differences for p- and s-polarized laser beams, indicating that ener...\",\"PeriodicalId\":58,\"journal\":{\"name\":\"The Journal of Physical Chemistry \",\"volume\":\"10 1\",\"pages\":\"4835-4840\"},\"PeriodicalIF\":2.7810,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry \",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/JP9110103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/JP9110103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

尺寸与电磁辐射波长相称的纳米结构表现出近场效应,并且作为光学天线,可以将激光辐射耦合到局部环境。激光诱导的硅微柱阵列表现为纳米光子离子源,可以通过旋转光偏振面来调制。然而,这些基质的表面形态范围有限,使得研究控制离子产生的潜在机制变得困难。在这里,我们证明纳米柱阵列(NAPAs)可以被定制以显示共振离子的产生。具有亚波长直径的柱的离子产率在高长宽比下显示出尖锐的共振。离子强度的共振增强可以通过调整周期来调节。除了强分子离子形成外,还观察到高能碎片通道的存在。在p偏振和s偏振激光束中,NAPAs的离子产额表现出显著的差异,表明能量…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailored Silicon Nanopost Arrays for Resonant Nanophotonic Ion Production
Nanostructures that have dimensions commensurate with the wavelength of the electromagnetic radiation exhibit near-field effects and, as optical antennas, can couple laser radiation to the local environment. Laser-induced silicon microcolumn arrays behave as nanophotonic ion sources that can be modulated by rotating the plane of light polarization. However, the limited range of surface morphologies available for these substrates makes it difficult to study the underlying mechanism that governs ion production. Here we demonstrate that nanopost arrays (NAPAs) can be tailored to exhibit resonant ion production. Ion yields from posts with subwavelength diameter show sharp resonances at high aspect ratios. The resonant enhancement in ion intensities can be modulated by adjusting the periodicity. In addition to strong molecular ion formation, the presence of high-energy fragmentation channels is observed. Ion yields from NAPAs exhibit dramatic differences for p- and s-polarized laser beams, indicating that ener...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信