{"title":"基于启发式的云数据中心软件许可动态整合方法","authors":"Leila Helali, Mohamed Nazih Omri","doi":"10.5815/ijisa.2021.06.01","DOIUrl":null,"url":null,"abstract":"Since its emergence, cloud computing has continued to evolve thanks to its ability to present computing as consumable services paid by use, and the possibilities of resource scaling that it offers according to client’s needs. Models and appropriate schemes for resource scaling through consolidation service have been considerably investigated,mainly, at the infrastructure level to optimize costs and energy consumption. Consolidation efforts at the SaaS level remain very restrained mostly when proprietary software are in hand. In order to fill this gap and provide software licenses elastically regarding the economic and energy-aware considerations in the context of distributed cloud computing systems, this work deals with dynamic software consolidation in commercial cloud data centers 𝑫𝑺𝟑𝑪. Our solution is based on heuristic algorithms and allows reallocating software licenses at runtime by determining the optimal amount of resources required for their execution and freed unused machines. Simulation results showed the efficiency of our solution in terms of energy by 68.85% savings and costs by 80.01% savings. It allowed to free up to 75% physical machines and 76.5% virtual machines and proved its scalability in terms of average execution time while varying the number of software and the number of licenses alternately.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"225 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heuristic-based Approach for Dynamic Consolidation of Software Licenses in Cloud Data Centers\",\"authors\":\"Leila Helali, Mohamed Nazih Omri\",\"doi\":\"10.5815/ijisa.2021.06.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since its emergence, cloud computing has continued to evolve thanks to its ability to present computing as consumable services paid by use, and the possibilities of resource scaling that it offers according to client’s needs. Models and appropriate schemes for resource scaling through consolidation service have been considerably investigated,mainly, at the infrastructure level to optimize costs and energy consumption. Consolidation efforts at the SaaS level remain very restrained mostly when proprietary software are in hand. In order to fill this gap and provide software licenses elastically regarding the economic and energy-aware considerations in the context of distributed cloud computing systems, this work deals with dynamic software consolidation in commercial cloud data centers 𝑫𝑺𝟑𝑪. Our solution is based on heuristic algorithms and allows reallocating software licenses at runtime by determining the optimal amount of resources required for their execution and freed unused machines. Simulation results showed the efficiency of our solution in terms of energy by 68.85% savings and costs by 80.01% savings. It allowed to free up to 75% physical machines and 76.5% virtual machines and proved its scalability in terms of average execution time while varying the number of software and the number of licenses alternately.\",\"PeriodicalId\":14067,\"journal\":{\"name\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"volume\":\"225 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijisa.2021.06.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2021.06.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Heuristic-based Approach for Dynamic Consolidation of Software Licenses in Cloud Data Centers
Since its emergence, cloud computing has continued to evolve thanks to its ability to present computing as consumable services paid by use, and the possibilities of resource scaling that it offers according to client’s needs. Models and appropriate schemes for resource scaling through consolidation service have been considerably investigated,mainly, at the infrastructure level to optimize costs and energy consumption. Consolidation efforts at the SaaS level remain very restrained mostly when proprietary software are in hand. In order to fill this gap and provide software licenses elastically regarding the economic and energy-aware considerations in the context of distributed cloud computing systems, this work deals with dynamic software consolidation in commercial cloud data centers 𝑫𝑺𝟑𝑪. Our solution is based on heuristic algorithms and allows reallocating software licenses at runtime by determining the optimal amount of resources required for their execution and freed unused machines. Simulation results showed the efficiency of our solution in terms of energy by 68.85% savings and costs by 80.01% savings. It allowed to free up to 75% physical machines and 76.5% virtual machines and proved its scalability in terms of average execution time while varying the number of software and the number of licenses alternately.