Zhicong Huang, Xue-mei Hu, Zhou Xue, Weizhu Xu, Tao Yue
{"title":"基于多视差尺度成本聚合的快速光场视差估计","authors":"Zhicong Huang, Xue-mei Hu, Zhou Xue, Weizhu Xu, Tao Yue","doi":"10.1109/ICCV48922.2021.00626","DOIUrl":null,"url":null,"abstract":"Light field images contain both angular and spatial information of captured light rays. The rich information of light fields enables straightforward disparity recovery capability but demands high computational cost as well. In this paper, we design a lightweight disparity estimation model with physical-based multi-disparity-scale cost volume aggregation for fast disparity estimation. By introducing a sub-network of edge guidance, we significantly improve the recovery of geometric details near edges and improve the overall performance. We test the proposed model extensively on both synthetic and real-captured datasets, which provide both densely and sparsely sampled light fields. Finally, we significantly reduce computation cost and GPU memory consumption, while achieving comparable performance with state-of-the-art disparity estimation methods for light fields. Our source code is available at https://github.com/zcong17huang/FastLFnet.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"6300-6309"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Fast Light-field Disparity Estimation with Multi-disparity-scale Cost Aggregation\",\"authors\":\"Zhicong Huang, Xue-mei Hu, Zhou Xue, Weizhu Xu, Tao Yue\",\"doi\":\"10.1109/ICCV48922.2021.00626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field images contain both angular and spatial information of captured light rays. The rich information of light fields enables straightforward disparity recovery capability but demands high computational cost as well. In this paper, we design a lightweight disparity estimation model with physical-based multi-disparity-scale cost volume aggregation for fast disparity estimation. By introducing a sub-network of edge guidance, we significantly improve the recovery of geometric details near edges and improve the overall performance. We test the proposed model extensively on both synthetic and real-captured datasets, which provide both densely and sparsely sampled light fields. Finally, we significantly reduce computation cost and GPU memory consumption, while achieving comparable performance with state-of-the-art disparity estimation methods for light fields. Our source code is available at https://github.com/zcong17huang/FastLFnet.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"1 1\",\"pages\":\"6300-6309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Light-field Disparity Estimation with Multi-disparity-scale Cost Aggregation
Light field images contain both angular and spatial information of captured light rays. The rich information of light fields enables straightforward disparity recovery capability but demands high computational cost as well. In this paper, we design a lightweight disparity estimation model with physical-based multi-disparity-scale cost volume aggregation for fast disparity estimation. By introducing a sub-network of edge guidance, we significantly improve the recovery of geometric details near edges and improve the overall performance. We test the proposed model extensively on both synthetic and real-captured datasets, which provide both densely and sparsely sampled light fields. Finally, we significantly reduce computation cost and GPU memory consumption, while achieving comparable performance with state-of-the-art disparity estimation methods for light fields. Our source code is available at https://github.com/zcong17huang/FastLFnet.