基于多视差尺度成本聚合的快速光场视差估计

Zhicong Huang, Xue-mei Hu, Zhou Xue, Weizhu Xu, Tao Yue
{"title":"基于多视差尺度成本聚合的快速光场视差估计","authors":"Zhicong Huang, Xue-mei Hu, Zhou Xue, Weizhu Xu, Tao Yue","doi":"10.1109/ICCV48922.2021.00626","DOIUrl":null,"url":null,"abstract":"Light field images contain both angular and spatial information of captured light rays. The rich information of light fields enables straightforward disparity recovery capability but demands high computational cost as well. In this paper, we design a lightweight disparity estimation model with physical-based multi-disparity-scale cost volume aggregation for fast disparity estimation. By introducing a sub-network of edge guidance, we significantly improve the recovery of geometric details near edges and improve the overall performance. We test the proposed model extensively on both synthetic and real-captured datasets, which provide both densely and sparsely sampled light fields. Finally, we significantly reduce computation cost and GPU memory consumption, while achieving comparable performance with state-of-the-art disparity estimation methods for light fields. Our source code is available at https://github.com/zcong17huang/FastLFnet.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"6300-6309"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Fast Light-field Disparity Estimation with Multi-disparity-scale Cost Aggregation\",\"authors\":\"Zhicong Huang, Xue-mei Hu, Zhou Xue, Weizhu Xu, Tao Yue\",\"doi\":\"10.1109/ICCV48922.2021.00626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field images contain both angular and spatial information of captured light rays. The rich information of light fields enables straightforward disparity recovery capability but demands high computational cost as well. In this paper, we design a lightweight disparity estimation model with physical-based multi-disparity-scale cost volume aggregation for fast disparity estimation. By introducing a sub-network of edge guidance, we significantly improve the recovery of geometric details near edges and improve the overall performance. We test the proposed model extensively on both synthetic and real-captured datasets, which provide both densely and sparsely sampled light fields. Finally, we significantly reduce computation cost and GPU memory consumption, while achieving comparable performance with state-of-the-art disparity estimation methods for light fields. Our source code is available at https://github.com/zcong17huang/FastLFnet.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"1 1\",\"pages\":\"6300-6309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

光场图像包含捕获光线的角度信息和空间信息。光场信息的丰富使视差恢复变得简单,但计算成本较高。为了快速估计视差,本文设计了一种基于物理的多视差尺度成本体积聚合的轻量级视差估计模型。通过引入边缘引导子网络,我们显著提高了边缘附近几何细节的恢复,提高了整体性能。我们在合成和实际捕获的数据集上广泛地测试了所提出的模型,这些数据集提供了密集和稀疏采样的光场。最后,我们显着降低了计算成本和GPU内存消耗,同时实现了与最先进的视差估计方法相当的性能。我们的源代码可从https://github.com/zcong17huang/FastLFnet获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Light-field Disparity Estimation with Multi-disparity-scale Cost Aggregation
Light field images contain both angular and spatial information of captured light rays. The rich information of light fields enables straightforward disparity recovery capability but demands high computational cost as well. In this paper, we design a lightweight disparity estimation model with physical-based multi-disparity-scale cost volume aggregation for fast disparity estimation. By introducing a sub-network of edge guidance, we significantly improve the recovery of geometric details near edges and improve the overall performance. We test the proposed model extensively on both synthetic and real-captured datasets, which provide both densely and sparsely sampled light fields. Finally, we significantly reduce computation cost and GPU memory consumption, while achieving comparable performance with state-of-the-art disparity estimation methods for light fields. Our source code is available at https://github.com/zcong17huang/FastLFnet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信