含消失Cotton张量和Bach张量的k -副接触流形和(k,μ)-副接触流形的研究

IF 0.5 Q3 MATHEMATICS
V. Venkatesha, N. Bhanumathi, C. Shruthi
{"title":"含消失Cotton张量和Bach张量的k -副接触流形和(k,μ)-副接触流形的研究","authors":"V. Venkatesha, N. Bhanumathi, C. Shruthi","doi":"10.52846/ami.v49i1.1336","DOIUrl":null,"url":null,"abstract":"\"The object of the present paper is to study K-paracontact manifold admitting parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact manifold. In that we prove for a K-paracontact metric manifold M^{2n+1} has parallel Cotton tensor if and only if M^{2n+1} is an η-Einstein manifold and r=-2n(2n+1). Further we show that if g is an η-Einstein K-paracontact metric and if g is Bach flat then g is an Einstein. Also we study vanishing Cotton tensor on (k,μ)-paracontact manifold for both k>-1 and k<-1. Finally, we prove that if M^{2n+1} is a (k,μ)-paracontact manifold for k ≠ -1 and if M^{2n+1} has vanishing Cotton tensor for μ ≠ k, then M^{2n+1} is an η-Einstein manifold.\"","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"527 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on K-paracontact and (k,μ)-paracontact manifold admitting vanishing Cotton tensor and Bach tensor\",\"authors\":\"V. Venkatesha, N. Bhanumathi, C. Shruthi\",\"doi\":\"10.52846/ami.v49i1.1336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The object of the present paper is to study K-paracontact manifold admitting parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact manifold. In that we prove for a K-paracontact metric manifold M^{2n+1} has parallel Cotton tensor if and only if M^{2n+1} is an η-Einstein manifold and r=-2n(2n+1). Further we show that if g is an η-Einstein K-paracontact metric and if g is Bach flat then g is an Einstein. Also we study vanishing Cotton tensor on (k,μ)-paracontact manifold for both k>-1 and k<-1. Finally, we prove that if M^{2n+1} is a (k,μ)-paracontact manifold for k ≠ -1 and if M^{2n+1} has vanishing Cotton tensor for μ ≠ k, then M^{2n+1} is an η-Einstein manifold.\\\"\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"527 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i1.1336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i1.1336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了含有平行Cotton张量和消失Cotton张量的k -副接触流形,并研究了k -副接触流形上的Bach平坦性。在此我们证明了对于k -副接触度量流形M^{2n+1}具有平行Cotton张量当且仅当M^{2n+1}是η-爱因斯坦流形且r=-2n(2n+1)。我们进一步证明,如果g是η-爱因斯坦k -准接触度规,如果g是巴赫平坦度规,那么g是爱因斯坦。同时研究了k>-1和k<-1时(k,μ)-副接触流形上的消失Cotton张量。最后,我们证明了如果M^{2n+1}是k≠-1时的(k,μ)-副接触流形,如果M^{2n+1}在μ≠k时具有消失的Cotton张量,则M^{2n+1}是η-爱因斯坦流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on K-paracontact and (k,μ)-paracontact manifold admitting vanishing Cotton tensor and Bach tensor
"The object of the present paper is to study K-paracontact manifold admitting parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact manifold. In that we prove for a K-paracontact metric manifold M^{2n+1} has parallel Cotton tensor if and only if M^{2n+1} is an η-Einstein manifold and r=-2n(2n+1). Further we show that if g is an η-Einstein K-paracontact metric and if g is Bach flat then g is an Einstein. Also we study vanishing Cotton tensor on (k,μ)-paracontact manifold for both k>-1 and k<-1. Finally, we prove that if M^{2n+1} is a (k,μ)-paracontact manifold for k ≠ -1 and if M^{2n+1} has vanishing Cotton tensor for μ ≠ k, then M^{2n+1} is an η-Einstein manifold."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信