关于图的熵的Yan猜想的解决

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Stijn Cambie, Matteo Mazzamurro
{"title":"关于图的熵的Yan猜想的解决","authors":"Stijn Cambie, Matteo Mazzamurro","doi":"10.46793/match.89-2.389c","DOIUrl":null,"url":null,"abstract":"The first degree-based entropy of a graph is the Shannon entropy of its degree sequence normalized by the degree sum. In this paper, we characterize the connected graphs with given order n and size m that minimize the first degree-based entropy whenever n − 1 ≤ m ≤ 2 n − 3 , thus extending and proving a conjecture by Yan.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resolution of Yan's Conjecture on Entropy of Graphs\",\"authors\":\"Stijn Cambie, Matteo Mazzamurro\",\"doi\":\"10.46793/match.89-2.389c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first degree-based entropy of a graph is the Shannon entropy of its degree sequence normalized by the degree sum. In this paper, we characterize the connected graphs with given order n and size m that minimize the first degree-based entropy whenever n − 1 ≤ m ≤ 2 n − 3 , thus extending and proving a conjecture by Yan.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46793/match.89-2.389c\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.89-2.389c","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

图的第一个基于度的熵是其度序列经度和归一化后的香农熵。本文刻画了n−1≤m≤2n−3时一阶熵最小的给定阶数和大小为m的连通图,从而推广并证明了Yan的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolution of Yan's Conjecture on Entropy of Graphs
The first degree-based entropy of a graph is the Shannon entropy of its degree sequence normalized by the degree sum. In this paper, we characterize the connected graphs with given order n and size m that minimize the first degree-based entropy whenever n − 1 ≤ m ≤ 2 n − 3 , thus extending and proving a conjecture by Yan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信