线性模型的一种有效的因果发现算法

Zhenxing Wang, L. Chan
{"title":"线性模型的一种有效的因果发现算法","authors":"Zhenxing Wang, L. Chan","doi":"10.1145/1835804.1835944","DOIUrl":null,"url":null,"abstract":"Bayesian network learning algorithms have been widely used for causal discovery since the pioneer work [13,18]. Among all existing algorithms, three-phase dependency analysis algorithm (TPDA) [5] is the most efficient one in the sense that it has polynomial-time complexity. However, there are still some limitations to be improved. First, TPDA depends on mutual information-based conditional independence (CI) tests, and so is not easy to be applied to continuous data. In addition, TPDA uses two phases to get approximate skeletons of Bayesian networks, which is not efficient in practice. In this paper, we propose a two-phase algorithm with partial correlation-based CI tests: the first phase of the algorithm constructs a Markov random field from data, which provides a close approximation to the structure of the true Bayesian network; at the second phase, the algorithm removes redundant edges according to CI tests to get the true Bayesian network. We show that two-phase algorithm with partial correlation-based CI tests can deal with continuous data following arbitrary distributions rather than only Gaussian distribution.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An efficient causal discovery algorithm for linear models\",\"authors\":\"Zhenxing Wang, L. Chan\",\"doi\":\"10.1145/1835804.1835944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian network learning algorithms have been widely used for causal discovery since the pioneer work [13,18]. Among all existing algorithms, three-phase dependency analysis algorithm (TPDA) [5] is the most efficient one in the sense that it has polynomial-time complexity. However, there are still some limitations to be improved. First, TPDA depends on mutual information-based conditional independence (CI) tests, and so is not easy to be applied to continuous data. In addition, TPDA uses two phases to get approximate skeletons of Bayesian networks, which is not efficient in practice. In this paper, we propose a two-phase algorithm with partial correlation-based CI tests: the first phase of the algorithm constructs a Markov random field from data, which provides a close approximation to the structure of the true Bayesian network; at the second phase, the algorithm removes redundant edges according to CI tests to get the true Bayesian network. We show that two-phase algorithm with partial correlation-based CI tests can deal with continuous data following arbitrary distributions rather than only Gaussian distribution.\",\"PeriodicalId\":20529,\"journal\":{\"name\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835804.1835944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

自先驱工作以来,贝叶斯网络学习算法已被广泛用于因果发现[13,18]。在现有的算法中,三相依赖分析算法(three-phase dependency analysis algorithm, TPDA)[5]是效率最高的算法,因为它具有多项式的时间复杂度。然而,仍有一些限制需要改进。首先,TPDA依赖于基于相互信息的条件独立(CI)检验,因此不容易应用于连续数据。此外,TPDA使用两阶段来获得贝叶斯网络的近似骨架,在实践中效率不高。在本文中,我们提出了一种基于部分相关CI检验的两阶段算法:该算法的第一阶段从数据中构造一个马尔可夫随机场,该随机场提供了接近真实贝叶斯网络结构的近似;第二阶段,算法根据CI测试去除冗余边,得到真正的贝叶斯网络。我们证明了基于偏相关CI检验的两阶段算法可以处理任意分布的连续数据,而不仅仅是高斯分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient causal discovery algorithm for linear models
Bayesian network learning algorithms have been widely used for causal discovery since the pioneer work [13,18]. Among all existing algorithms, three-phase dependency analysis algorithm (TPDA) [5] is the most efficient one in the sense that it has polynomial-time complexity. However, there are still some limitations to be improved. First, TPDA depends on mutual information-based conditional independence (CI) tests, and so is not easy to be applied to continuous data. In addition, TPDA uses two phases to get approximate skeletons of Bayesian networks, which is not efficient in practice. In this paper, we propose a two-phase algorithm with partial correlation-based CI tests: the first phase of the algorithm constructs a Markov random field from data, which provides a close approximation to the structure of the true Bayesian network; at the second phase, the algorithm removes redundant edges according to CI tests to get the true Bayesian network. We show that two-phase algorithm with partial correlation-based CI tests can deal with continuous data following arbitrary distributions rather than only Gaussian distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信