无限Schrödinger网络

Pub Date : 2021-12-01 DOI:10.35634/vm210408
N. Nathiya, C. Amulya Smyrna
{"title":"无限Schrödinger网络","authors":"N. Nathiya, C. Amulya Smyrna","doi":"10.35634/vm210408","DOIUrl":null,"url":null,"abstract":"Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\\Delta$-theory and the $\\Delta_q$-theory is investigated. In the $\\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite Schrödinger networks\",\"authors\":\"N. Nathiya, C. Amulya Smyrna\",\"doi\":\"10.35634/vm210408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\\\\Delta$-theory and the $\\\\Delta_q$-theory is investigated. In the $\\\\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm210408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm210408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

偏微分方程如拉普拉斯或泊松方程的有限差分模型导致有限网络。在无界平面或空间上的离散方程得到一个无限网络。在无限网络中,定义Schrödinger算子(摄动拉普拉斯算子,$q$-Laplace),建立一个离散势理论,该理论在欧几里德空间的Schrödinger方程中有一个模型。研究了拉普拉斯算子$\Delta$-理论与$\Delta_q$-理论的关系。在$\Delta_q$-理论中,求解了网络为树的泊松方程,得到了一般情况下非负$q$-超调和函数的正则表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Infinite Schrödinger networks
Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信