{"title":"马尔可夫链的非典型集概率的非渐近上界","authors":"L. A. Lastras-Montaño","doi":"10.1109/ISIT.2004.1365260","DOIUrl":null,"url":null,"abstract":"For a stationary, irreducible and aperiodic Markov chain with finite alphabet A, starting symbol X/sub 0/=/spl sigma/, transition probability matrix P, stationary distribution /spl pi/, support S(/spl pi/,P)={(j,k):/spl pi//sub j/P/sub k|j/>0} and for a function f such that M=/spl Delta/E/sub /spl pi/P/f(X/sub 1/,X/sub 2/) 0/{K/sub n//(1+K/sub n/)}/spl epsiv//(max/sub j,k:P(k|j)/>0|f(j,k)|]/sup 2/ where K/sub n/=(1-|A|max/sub j,k/|P/sub k|j//sup n/-/spl pi//sub k/)/n). Under the conditions stated, the set over which the sup is taken is nonempty and therefore the sup exists and is positive; it is also shown that the sup is attained at a finite value of n. A nonasymptotic version of this result is also given based on the method of Markov types.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":"980 1","pages":"222"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonasymptotic upper bounds on the probability of the epsilon-atypical set for Markov chains\",\"authors\":\"L. A. Lastras-Montaño\",\"doi\":\"10.1109/ISIT.2004.1365260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a stationary, irreducible and aperiodic Markov chain with finite alphabet A, starting symbol X/sub 0/=/spl sigma/, transition probability matrix P, stationary distribution /spl pi/, support S(/spl pi/,P)={(j,k):/spl pi//sub j/P/sub k|j/>0} and for a function f such that M=/spl Delta/E/sub /spl pi/P/f(X/sub 1/,X/sub 2/) 0/{K/sub n//(1+K/sub n/)}/spl epsiv//(max/sub j,k:P(k|j)/>0|f(j,k)|]/sup 2/ where K/sub n/=(1-|A|max/sub j,k/|P/sub k|j//sup n/-/spl pi//sub k/)/n). Under the conditions stated, the set over which the sup is taken is nonempty and therefore the sup exists and is positive; it is also shown that the sup is attained at a finite value of n. A nonasymptotic version of this result is also given based on the method of Markov types.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":\"980 1\",\"pages\":\"222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
对于具有有限字母a的平稳、不可约、非周期马尔可夫链,起始符号X/sub 0/=/spl sigma/,转移概率矩阵P,平稳分布/spl pi/,支持S(/spl pi/,P)={(j,k):/spl pi//sub j/P/sub k|j/>},对于一个函数f M=/spl Delta/E/sub /spl pi/P/ P/f(X/sub 1/,X/sub 2/) 0/{k/ sub n//(1+ k/ sub n/)}/spl epsiv//(max/sub j,k:P(k|j)/ |f(j,k)|]/sup 2/其中k/ sub n/=(1-| a |max/sub j,k/|P/sub k|j/ sup n/-/spl pi//sub k/)/n)。在上述条件下,sup所处的集合是非空的,因此sup存在并且是正的;在有限的n值处,我们也得到了这一结果的一个非渐近版本。
Nonasymptotic upper bounds on the probability of the epsilon-atypical set for Markov chains
For a stationary, irreducible and aperiodic Markov chain with finite alphabet A, starting symbol X/sub 0/=/spl sigma/, transition probability matrix P, stationary distribution /spl pi/, support S(/spl pi/,P)={(j,k):/spl pi//sub j/P/sub k|j/>0} and for a function f such that M=/spl Delta/E/sub /spl pi/P/f(X/sub 1/,X/sub 2/) 0/{K/sub n//(1+K/sub n/)}/spl epsiv//(max/sub j,k:P(k|j)/>0|f(j,k)|]/sup 2/ where K/sub n/=(1-|A|max/sub j,k/|P/sub k|j//sup n/-/spl pi//sub k/)/n). Under the conditions stated, the set over which the sup is taken is nonempty and therefore the sup exists and is positive; it is also shown that the sup is attained at a finite value of n. A nonasymptotic version of this result is also given based on the method of Markov types.