{"title":"预测阿尔茨海默病恶化的机器学习方法","authors":"H. Musto, D. Stamate, Ida M. Pu, Daniel Stahl","doi":"10.1109/ICMLA52953.2021.00232","DOIUrl":null,"url":null,"abstract":"This paper explores deterioration in Alzheimer’s Disease using Machine Learning. Subjects were split into two datasets based on baseline diagnosis (Cognitively Normal, Mild Cognitive Impairment), with outcome of deterioration at final visit (a binomial essentially yes/no categorisation) using data from the Alzheimer’s Disease Neuroimaging Initiative (demographics, genetics, CSF, imaging, and neuropsychological testing etc). Six machine learning models, including gradient boosting, were built, and evaluated on these datasets using a nested cross-validation procedure, with the best performing models being put through repeated nested cross-validation at 100 iterations. We were able to demonstrate good predictive ability using CART predicting which of those in the cognitively normal group deteriorated and received a worse diagnosis (AUC = 0.88). For the mild cognitive impairment group, we were able to achieve good predictive ability for deterioration with Elastic Net (AUC = 0.76).","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"86 1","pages":"1443-1448"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Machine Learning Approach for Predicting Deterioration in Alzheimer’s Disease\",\"authors\":\"H. Musto, D. Stamate, Ida M. Pu, Daniel Stahl\",\"doi\":\"10.1109/ICMLA52953.2021.00232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores deterioration in Alzheimer’s Disease using Machine Learning. Subjects were split into two datasets based on baseline diagnosis (Cognitively Normal, Mild Cognitive Impairment), with outcome of deterioration at final visit (a binomial essentially yes/no categorisation) using data from the Alzheimer’s Disease Neuroimaging Initiative (demographics, genetics, CSF, imaging, and neuropsychological testing etc). Six machine learning models, including gradient boosting, were built, and evaluated on these datasets using a nested cross-validation procedure, with the best performing models being put through repeated nested cross-validation at 100 iterations. We were able to demonstrate good predictive ability using CART predicting which of those in the cognitively normal group deteriorated and received a worse diagnosis (AUC = 0.88). For the mild cognitive impairment group, we were able to achieve good predictive ability for deterioration with Elastic Net (AUC = 0.76).\",\"PeriodicalId\":6750,\"journal\":{\"name\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"86 1\",\"pages\":\"1443-1448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA52953.2021.00232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Machine Learning Approach for Predicting Deterioration in Alzheimer’s Disease
This paper explores deterioration in Alzheimer’s Disease using Machine Learning. Subjects were split into two datasets based on baseline diagnosis (Cognitively Normal, Mild Cognitive Impairment), with outcome of deterioration at final visit (a binomial essentially yes/no categorisation) using data from the Alzheimer’s Disease Neuroimaging Initiative (demographics, genetics, CSF, imaging, and neuropsychological testing etc). Six machine learning models, including gradient boosting, were built, and evaluated on these datasets using a nested cross-validation procedure, with the best performing models being put through repeated nested cross-validation at 100 iterations. We were able to demonstrate good predictive ability using CART predicting which of those in the cognitively normal group deteriorated and received a worse diagnosis (AUC = 0.88). For the mild cognitive impairment group, we were able to achieve good predictive ability for deterioration with Elastic Net (AUC = 0.76).