{"title":"弦理论中通过膜统一晶格模型、链接和量子几何朗兰","authors":"M. Ashwinkumar, M. Tan","doi":"10.4310/ATMP.2020.v24.n7.a1","DOIUrl":null,"url":null,"abstract":"We explain how, starting with a stack of D4-branes ending on an NS5-brane in type IIA string theory, one can, via T-duality and the topological-holomorphic nature of the relevant worldvolume theories, relate (i) the lattice models realized by Costello's 4d Chern-Simons theory, (ii) links in 3d analytically-continued Chern-Simons theory, (iii) the quantum geometric Langlands correspondence realized by Kapustin-Witten using 4d N = 4 gauge theory and its quantum group modification, and (iv) the Gaitsgory-Lurie conjecture relating quantum groups/affine Kac-Moody algebras to Whittaker D-modules/W-algebras. This furnishes, purely physically via branes in string theory, a novel bridge between the mathematics of integrable systems, geometric topology, geometric representation theory, and quantum algebras.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Unifying lattice models, links and quantum geometric Langlands via branes in string theory\",\"authors\":\"M. Ashwinkumar, M. Tan\",\"doi\":\"10.4310/ATMP.2020.v24.n7.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explain how, starting with a stack of D4-branes ending on an NS5-brane in type IIA string theory, one can, via T-duality and the topological-holomorphic nature of the relevant worldvolume theories, relate (i) the lattice models realized by Costello's 4d Chern-Simons theory, (ii) links in 3d analytically-continued Chern-Simons theory, (iii) the quantum geometric Langlands correspondence realized by Kapustin-Witten using 4d N = 4 gauge theory and its quantum group modification, and (iv) the Gaitsgory-Lurie conjecture relating quantum groups/affine Kac-Moody algebras to Whittaker D-modules/W-algebras. This furnishes, purely physically via branes in string theory, a novel bridge between the mathematics of integrable systems, geometric topology, geometric representation theory, and quantum algebras.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/ATMP.2020.v24.n7.a1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/ATMP.2020.v24.n7.a1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 6
摘要
我们解释了如何从IIA型弦理论中以ns5膜为尾的d4膜的一堆开始,通过t对偶性和相关世界体积理论的拓扑全纯性,联系(i) Costello的4d chen - simons理论实现的晶格模型,(ii)三维解析连续chen - simons理论中的链接,(iii) Kapustin-Witten利用4d N = 4规范理论及其量子群修正实现的量子几何朗兰兹对应。(iv)量子群/仿射Kac-Moody代数与Whittaker d -模/ w -代数之间的Gaitsgory-Lurie猜想。这在纯物理上通过弦理论中的膜,在可积系统的数学、几何拓扑、几何表示理论和量子代数之间架起了一座新的桥梁。
Unifying lattice models, links and quantum geometric Langlands via branes in string theory
We explain how, starting with a stack of D4-branes ending on an NS5-brane in type IIA string theory, one can, via T-duality and the topological-holomorphic nature of the relevant worldvolume theories, relate (i) the lattice models realized by Costello's 4d Chern-Simons theory, (ii) links in 3d analytically-continued Chern-Simons theory, (iii) the quantum geometric Langlands correspondence realized by Kapustin-Witten using 4d N = 4 gauge theory and its quantum group modification, and (iv) the Gaitsgory-Lurie conjecture relating quantum groups/affine Kac-Moody algebras to Whittaker D-modules/W-algebras. This furnishes, purely physically via branes in string theory, a novel bridge between the mathematics of integrable systems, geometric topology, geometric representation theory, and quantum algebras.
期刊介绍:
Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.