对抗性学习框架中基于角色的多回合会话模型

O. Olabiyi, Anish Khazane, Erik T. Mueller
{"title":"对抗性学习框架中基于角色的多回合会话模型","authors":"O. Olabiyi, Anish Khazane, Erik T. Mueller","doi":"10.1109/ICMLA.2018.00079","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the persona-based sequence-to-sequence (Seq2Seq) neural network conversation model to multi-turn dialogue by modifying the state-of-the-art hredGAN architecture. To achieve this, we introduce an additional input modality into the encoder and decoder of hredGAN to capture other attributes such as speaker identity, location, sub-topics, and other external attributes that might be available from the corpus of human-to-human interactions. The resulting persona hredGAN (phredGAN) shows better performance than both the existing persona-based Seq2Seq and hredGAN models when those external attributes are available in a multi-turn dialogue corpus. This superiority is demonstrated on TV drama series with character consistency (such as Big Bang Theory and Friends) and customer service interaction datasets such as Ubuntu dialogue corpus in terms of perplexity, BLEU, ROUGE, and Distinct n-gram scores.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"196 1","pages":"489-494"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Persona-Based Multi-turn Conversation Model in an Adversarial Learning Framework\",\"authors\":\"O. Olabiyi, Anish Khazane, Erik T. Mueller\",\"doi\":\"10.1109/ICMLA.2018.00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the persona-based sequence-to-sequence (Seq2Seq) neural network conversation model to multi-turn dialogue by modifying the state-of-the-art hredGAN architecture. To achieve this, we introduce an additional input modality into the encoder and decoder of hredGAN to capture other attributes such as speaker identity, location, sub-topics, and other external attributes that might be available from the corpus of human-to-human interactions. The resulting persona hredGAN (phredGAN) shows better performance than both the existing persona-based Seq2Seq and hredGAN models when those external attributes are available in a multi-turn dialogue corpus. This superiority is demonstrated on TV drama series with character consistency (such as Big Bang Theory and Friends) and customer service interaction datasets such as Ubuntu dialogue corpus in terms of perplexity, BLEU, ROUGE, and Distinct n-gram scores.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"196 1\",\"pages\":\"489-494\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们通过修改最先进的hredGAN架构,将基于人物的序列到序列(Seq2Seq)神经网络会话模型扩展到多回合对话。为了实现这一点,我们在hredGAN的编码器和解码器中引入了一个额外的输入模式,以捕获其他属性,如说话人身份、位置、子主题和其他可能从人与人之间的交互语料库中可用的外部属性。当这些外部属性在多回合对话语料库中可用时,生成的角色hredGAN (phredGAN)比现有的基于角色的Seq2Seq和hredGAN模型都表现出更好的性能。这种优势在具有人物一致性的电视剧(如《生活大爆炸》和《老友记》)和客户服务交互数据集(如Ubuntu对话语料库)在perplexity、BLEU、ROUGE和Distinct n-gram得分方面得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Persona-Based Multi-turn Conversation Model in an Adversarial Learning Framework
In this paper, we extend the persona-based sequence-to-sequence (Seq2Seq) neural network conversation model to multi-turn dialogue by modifying the state-of-the-art hredGAN architecture. To achieve this, we introduce an additional input modality into the encoder and decoder of hredGAN to capture other attributes such as speaker identity, location, sub-topics, and other external attributes that might be available from the corpus of human-to-human interactions. The resulting persona hredGAN (phredGAN) shows better performance than both the existing persona-based Seq2Seq and hredGAN models when those external attributes are available in a multi-turn dialogue corpus. This superiority is demonstrated on TV drama series with character consistency (such as Big Bang Theory and Friends) and customer service interaction datasets such as Ubuntu dialogue corpus in terms of perplexity, BLEU, ROUGE, and Distinct n-gram scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信