{"title":"基于小波的非线性加速器问题。2一般多极场的轨道动力学","authors":"A. Fedorova, M. Zeitlin","doi":"10.1109/PAC.1999.792976","DOIUrl":null,"url":null,"abstract":"For refs. to previous papers see Fedorova et al., AIP Conf. Proc., vol.468, p.69 (1999). In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider orbital motion in the transverse plane for a single particle in a circular magnetic lattice in the case when we take into account multipolar expansion up to an arbitrary finite number. We reduce initial dynamical problem to a finite number (equal to the number of n-poles) of standard algebraical problems and represent all dynamical variables via an expansion in the base of periodic wavelets.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear accelerator problems via wavelets. II. Orbital dynamics in general multipolar field\",\"authors\":\"A. Fedorova, M. Zeitlin\",\"doi\":\"10.1109/PAC.1999.792976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For refs. to previous papers see Fedorova et al., AIP Conf. Proc., vol.468, p.69 (1999). In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider orbital motion in the transverse plane for a single particle in a circular magnetic lattice in the case when we take into account multipolar expansion up to an arbitrary finite number. We reduce initial dynamical problem to a finite number (equal to the number of n-poles) of standard algebraical problems and represent all dynamical variables via an expansion in the base of periodic wavelets.\",\"PeriodicalId\":20453,\"journal\":{\"name\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1999.792976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.792976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
参考文献。以前的论文见Fedorova et al., AIP Conf. Proc, vol.468, p.69(1999)。在这一系列的八篇论文中,我们介绍了从小波分析到多项式近似的方法在许多加速器物理问题中的应用。在这一部分中,我们考虑到多极膨胀到任意有限数的情况下,考虑圆形磁晶格中单个粒子在横向平面上的轨道运动。我们将初始动力问题简化为有限个数(等于n-极点数)的标准代数问题,并通过在周期小波基中的展开来表示所有动力变量。
Nonlinear accelerator problems via wavelets. II. Orbital dynamics in general multipolar field
For refs. to previous papers see Fedorova et al., AIP Conf. Proc., vol.468, p.69 (1999). In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider orbital motion in the transverse plane for a single particle in a circular magnetic lattice in the case when we take into account multipolar expansion up to an arbitrary finite number. We reduce initial dynamical problem to a finite number (equal to the number of n-poles) of standard algebraical problems and represent all dynamical variables via an expansion in the base of periodic wavelets.