{"title":"主题演讲:量子计算:通过量子力学革新计算","authors":"K. Svore","doi":"10.1109/ICCAD.2017.8203750","DOIUrl":null,"url":null,"abstract":"In 1981, Richard Feynman proposed a device called a “quantum computer” to take advantage of the laws of quantum physics to achieve computational speed-ups over classical methods. Quantum computing promises to revolutionize how and what we compute. Over the course of three decades, quantum algorithms have been developed that offer fast solutions to problems in a variety of fields including number theory, optimization, chemistry, physics, and materials science. Quantum devices have also significantly advanced such that components of a scalable quantum computer have been demonstrated; the promise of implementing quantum algorithms is in our near future. I will attempt to explain some of the mysteries of this disruptive, revolutionary computational paradigm and how it will transform our digital age.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":"52 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keynote addresses: Quantum computing: Revolutionizing computation through quantum mechanics\",\"authors\":\"K. Svore\",\"doi\":\"10.1109/ICCAD.2017.8203750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1981, Richard Feynman proposed a device called a “quantum computer” to take advantage of the laws of quantum physics to achieve computational speed-ups over classical methods. Quantum computing promises to revolutionize how and what we compute. Over the course of three decades, quantum algorithms have been developed that offer fast solutions to problems in a variety of fields including number theory, optimization, chemistry, physics, and materials science. Quantum devices have also significantly advanced such that components of a scalable quantum computer have been demonstrated; the promise of implementing quantum algorithms is in our near future. I will attempt to explain some of the mysteries of this disruptive, revolutionary computational paradigm and how it will transform our digital age.\",\"PeriodicalId\":90518,\"journal\":{\"name\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":\"52 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Keynote addresses: Quantum computing: Revolutionizing computation through quantum mechanics
In 1981, Richard Feynman proposed a device called a “quantum computer” to take advantage of the laws of quantum physics to achieve computational speed-ups over classical methods. Quantum computing promises to revolutionize how and what we compute. Over the course of three decades, quantum algorithms have been developed that offer fast solutions to problems in a variety of fields including number theory, optimization, chemistry, physics, and materials science. Quantum devices have also significantly advanced such that components of a scalable quantum computer have been demonstrated; the promise of implementing quantum algorithms is in our near future. I will attempt to explain some of the mysteries of this disruptive, revolutionary computational paradigm and how it will transform our digital age.