{"title":"模拟森林生长和碳储量对二氧化碳和温度升高的响应","authors":"M. Kirschbaum","doi":"10.3402/TELLUSB.V51I5.16500","DOIUrl":null,"url":null,"abstract":"The response of plant growth to increasing climate change remains one of the unresolved issues in understanding the future of the terrestrial biosphere. It was investigated here by using the comprehensive forest growth model CenW 1.0.5 which integrates routines for the fluxes of carbon and water, interception of radiation and the cycling of nutrients. It was run with water and/or nutrient limitations on a background of naturally observed climate at Canberra, Australia. It was parameterised for Pinus radiata , the commercially most important plantation species in Australia. The simulations showed that under water-limited conditions, forest growth was highly sensitive to doubling CO 2 ,with growth increases of over 50% on average and even greater increases in dry years. In contrast, when water supply was adequate, but nutrients were limiting, growth increases were smaller, with an initial increase of about 15% during the first year after CO 2 was doubled. This growth increase diminished further over subsequent years so that after 20 years, there was virtually no remaining effect. This diminishing response was due to developing nutrient limitations caused by extra carbon input which immobilised nutrients in the soil. When both water and nutrients were adequate, growth was increased by about 15–20% with no decrease over time. Increasing ambient temperature had a positive effect on growth under nutrient limited conditions by stimulating nitrogen mineralisation rates, but had very little effect when nutrients were non-limiting. Responses were qualitatively similar when conditions were changed gradually. In response to increasing CO 2 by 2 µ mol mol −1 year −1 over 50 years, growth was increased by only 1% under nutrient-limited condition but by 16% under water-limited conditions. When temperature and CO 2 were both changed to emulate conditions between 1950 and 2030, growth was enhanced between 5 and 15% over the 80-year period due to the effect of CO 2 on photosynthesis and water economy especially under water-limited conditions, and due to the effect of increasing temperature in mineralising greater amounts of nutrients. These results show that there is not one universally applicable biological growth response to increasing temperature and CO 2 , but that they interact in complex ways with a number of other growth limiting factors. Any response factor of plants to CO 2 can only be quantified if the important interacting factors can be independently characterized for different situations. DOI: 10.1034/j.1600-0889.1999.t01-4-00002.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Modelling forest growth and carbon storage in response to increasing CO 2 and temperature\",\"authors\":\"M. Kirschbaum\",\"doi\":\"10.3402/TELLUSB.V51I5.16500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The response of plant growth to increasing climate change remains one of the unresolved issues in understanding the future of the terrestrial biosphere. It was investigated here by using the comprehensive forest growth model CenW 1.0.5 which integrates routines for the fluxes of carbon and water, interception of radiation and the cycling of nutrients. It was run with water and/or nutrient limitations on a background of naturally observed climate at Canberra, Australia. It was parameterised for Pinus radiata , the commercially most important plantation species in Australia. The simulations showed that under water-limited conditions, forest growth was highly sensitive to doubling CO 2 ,with growth increases of over 50% on average and even greater increases in dry years. In contrast, when water supply was adequate, but nutrients were limiting, growth increases were smaller, with an initial increase of about 15% during the first year after CO 2 was doubled. This growth increase diminished further over subsequent years so that after 20 years, there was virtually no remaining effect. This diminishing response was due to developing nutrient limitations caused by extra carbon input which immobilised nutrients in the soil. When both water and nutrients were adequate, growth was increased by about 15–20% with no decrease over time. Increasing ambient temperature had a positive effect on growth under nutrient limited conditions by stimulating nitrogen mineralisation rates, but had very little effect when nutrients were non-limiting. Responses were qualitatively similar when conditions were changed gradually. In response to increasing CO 2 by 2 µ mol mol −1 year −1 over 50 years, growth was increased by only 1% under nutrient-limited condition but by 16% under water-limited conditions. When temperature and CO 2 were both changed to emulate conditions between 1950 and 2030, growth was enhanced between 5 and 15% over the 80-year period due to the effect of CO 2 on photosynthesis and water economy especially under water-limited conditions, and due to the effect of increasing temperature in mineralising greater amounts of nutrients. These results show that there is not one universally applicable biological growth response to increasing temperature and CO 2 , but that they interact in complex ways with a number of other growth limiting factors. Any response factor of plants to CO 2 can only be quantified if the important interacting factors can be independently characterized for different situations. DOI: 10.1034/j.1600-0889.1999.t01-4-00002.x\",\"PeriodicalId\":54432,\"journal\":{\"name\":\"Tellus Series B-Chemical and Physical Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus Series B-Chemical and Physical Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3402/TELLUSB.V51I5.16500\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I5.16500","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Modelling forest growth and carbon storage in response to increasing CO 2 and temperature
The response of plant growth to increasing climate change remains one of the unresolved issues in understanding the future of the terrestrial biosphere. It was investigated here by using the comprehensive forest growth model CenW 1.0.5 which integrates routines for the fluxes of carbon and water, interception of radiation and the cycling of nutrients. It was run with water and/or nutrient limitations on a background of naturally observed climate at Canberra, Australia. It was parameterised for Pinus radiata , the commercially most important plantation species in Australia. The simulations showed that under water-limited conditions, forest growth was highly sensitive to doubling CO 2 ,with growth increases of over 50% on average and even greater increases in dry years. In contrast, when water supply was adequate, but nutrients were limiting, growth increases were smaller, with an initial increase of about 15% during the first year after CO 2 was doubled. This growth increase diminished further over subsequent years so that after 20 years, there was virtually no remaining effect. This diminishing response was due to developing nutrient limitations caused by extra carbon input which immobilised nutrients in the soil. When both water and nutrients were adequate, growth was increased by about 15–20% with no decrease over time. Increasing ambient temperature had a positive effect on growth under nutrient limited conditions by stimulating nitrogen mineralisation rates, but had very little effect when nutrients were non-limiting. Responses were qualitatively similar when conditions were changed gradually. In response to increasing CO 2 by 2 µ mol mol −1 year −1 over 50 years, growth was increased by only 1% under nutrient-limited condition but by 16% under water-limited conditions. When temperature and CO 2 were both changed to emulate conditions between 1950 and 2030, growth was enhanced between 5 and 15% over the 80-year period due to the effect of CO 2 on photosynthesis and water economy especially under water-limited conditions, and due to the effect of increasing temperature in mineralising greater amounts of nutrients. These results show that there is not one universally applicable biological growth response to increasing temperature and CO 2 , but that they interact in complex ways with a number of other growth limiting factors. Any response factor of plants to CO 2 can only be quantified if the important interacting factors can be independently characterized for different situations. DOI: 10.1034/j.1600-0889.1999.t01-4-00002.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.