玉米芯渣合成荧光氮掺杂碳球用于检测水溶液中铁(III)

L. P. Magagula, N. Moloto, S. Gqoba, P. Kooyman, T. Motaung, E. Linganiso
{"title":"玉米芯渣合成荧光氮掺杂碳球用于检测水溶液中铁(III)","authors":"L. P. Magagula, N. Moloto, S. Gqoba, P. Kooyman, T. Motaung, E. Linganiso","doi":"10.1109/SENSORS47087.2021.9639764","DOIUrl":null,"url":null,"abstract":"Water contamination has become more severe as modern industrial technology has progressed over the years. Among water contaminants are heavy metal ions such as Fe3+, which is commonly used in industries such as mining, chemical processing, and battery manufacturing. Fe3+ is the principal contaminant of concern in acid mine drainage from coal mines, causing siderosis and organ damage. The current study prepared highly photoluminescent nitrogen-doped functionalized carbon spheres (N-CSs) from corncob residue using a facile, green, and low-cost microwave synthesis. The as-prepared N-CSs exhibited an excitation-dependent fluorescence with a maximum emission and excitation at 420 and 340 nm, respectively and showed good selectivity and sensitivity towards the detection of Fe3+ with a 70 nM limit of detection.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"70 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of fluorescent nitrogen-doped carbon spheres from corncob residue for the detection of Fe (III) in aqueous solutions\",\"authors\":\"L. P. Magagula, N. Moloto, S. Gqoba, P. Kooyman, T. Motaung, E. Linganiso\",\"doi\":\"10.1109/SENSORS47087.2021.9639764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water contamination has become more severe as modern industrial technology has progressed over the years. Among water contaminants are heavy metal ions such as Fe3+, which is commonly used in industries such as mining, chemical processing, and battery manufacturing. Fe3+ is the principal contaminant of concern in acid mine drainage from coal mines, causing siderosis and organ damage. The current study prepared highly photoluminescent nitrogen-doped functionalized carbon spheres (N-CSs) from corncob residue using a facile, green, and low-cost microwave synthesis. The as-prepared N-CSs exhibited an excitation-dependent fluorescence with a maximum emission and excitation at 420 and 340 nm, respectively and showed good selectivity and sensitivity towards the detection of Fe3+ with a 70 nM limit of detection.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"70 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,随着现代工业技术的进步,水污染变得越来越严重。水污染物中有重金属离子,如Fe3+,它通常用于采矿、化学加工和电池制造等行业。铁(Fe3+)是煤矿酸性矿井废水的主要污染物,可引起铁中毒和器官损伤。本研究以玉米芯渣为原料,采用简单、绿色、低成本的微波合成方法制备了高度光致发光的氮掺杂功能化碳球(N-CSs)。制备的N-CSs具有激发依赖性荧光,最大发射和激发波长分别为420 nm和340 nm,对Fe3+的检测具有良好的选择性和灵敏度,检测限为70 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of fluorescent nitrogen-doped carbon spheres from corncob residue for the detection of Fe (III) in aqueous solutions
Water contamination has become more severe as modern industrial technology has progressed over the years. Among water contaminants are heavy metal ions such as Fe3+, which is commonly used in industries such as mining, chemical processing, and battery manufacturing. Fe3+ is the principal contaminant of concern in acid mine drainage from coal mines, causing siderosis and organ damage. The current study prepared highly photoluminescent nitrogen-doped functionalized carbon spheres (N-CSs) from corncob residue using a facile, green, and low-cost microwave synthesis. The as-prepared N-CSs exhibited an excitation-dependent fluorescence with a maximum emission and excitation at 420 and 340 nm, respectively and showed good selectivity and sensitivity towards the detection of Fe3+ with a 70 nM limit of detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信