天然高分子涂层磁性纳米复合材料的靶向给药研究

F. Soleymani
{"title":"天然高分子涂层磁性纳米复合材料的靶向给药研究","authors":"F. Soleymani","doi":"10.24203/ajas.v10i6.7117","DOIUrl":null,"url":null,"abstract":"Recent research on the resistance of pathogenic bacteria to existing antibiotics has shown the rapid spread of this problem and has raised concerns in scientific circles and international organizations. The development of new antibiotics is still slow in the face of growing needs. In addition, the overuse of antibiotics in developing countries has exacerbated the problem. Therefore, the development of new and multidimensional strategies is necessary to address this global problem. One of the solutions that has been considered by researchers in recent years is the development of targeted drug delivery systems based on magnetic nanoparticles. Unique magnetic properties the physicochemical and physiological properties of magnetic nanoparticles have made them useful as carriers for delivering drugs to the target tissue. In this study, we try to provide a general study to some subjects such as synthesis of magnetic nanoparticles and coating of these nanoparticles with natural polymer to grain (mucilage to grain) as a biocompatible, non-toxic and oral polymeric agent for maximum loading of ciprofloxacin antibiotic on nanostructured nuclei Magnetite and shell to mucilage to grain, to study the effect of different parameters and fabrication conditions of samples on the structural, physicochemical, magnetic, colloidal stability and antibacterial properties of samples, and also to investigate the effect of pH on ciprofloxacin adsorption on magnet nanoparticles by mucilage to the grain and release of the drug from these nanoparticles.","PeriodicalId":8497,"journal":{"name":"Asian Journal of Applied Sciences","volume":"584 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of the Magnetic Nanocomposites with Natural Polymer Coating From the Perspective of the Targeted Drug Delivery\",\"authors\":\"F. Soleymani\",\"doi\":\"10.24203/ajas.v10i6.7117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research on the resistance of pathogenic bacteria to existing antibiotics has shown the rapid spread of this problem and has raised concerns in scientific circles and international organizations. The development of new antibiotics is still slow in the face of growing needs. In addition, the overuse of antibiotics in developing countries has exacerbated the problem. Therefore, the development of new and multidimensional strategies is necessary to address this global problem. One of the solutions that has been considered by researchers in recent years is the development of targeted drug delivery systems based on magnetic nanoparticles. Unique magnetic properties the physicochemical and physiological properties of magnetic nanoparticles have made them useful as carriers for delivering drugs to the target tissue. In this study, we try to provide a general study to some subjects such as synthesis of magnetic nanoparticles and coating of these nanoparticles with natural polymer to grain (mucilage to grain) as a biocompatible, non-toxic and oral polymeric agent for maximum loading of ciprofloxacin antibiotic on nanostructured nuclei Magnetite and shell to mucilage to grain, to study the effect of different parameters and fabrication conditions of samples on the structural, physicochemical, magnetic, colloidal stability and antibacterial properties of samples, and also to investigate the effect of pH on ciprofloxacin adsorption on magnet nanoparticles by mucilage to the grain and release of the drug from these nanoparticles.\",\"PeriodicalId\":8497,\"journal\":{\"name\":\"Asian Journal of Applied Sciences\",\"volume\":\"584 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24203/ajas.v10i6.7117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ajas.v10i6.7117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近关于致病菌对现有抗生素的耐药性的研究表明,这一问题迅速蔓延,并引起了科学界和国际组织的关注。面对日益增长的需求,新抗生素的开发仍然缓慢。此外,发展中国家过度使用抗生素加剧了这一问题。因此,有必要制定新的多维战略来解决这一全球性问题。近年来,研究人员考虑的解决方案之一是开发基于磁性纳米颗粒的靶向药物递送系统。磁性纳米颗粒独特的磁性、物理化学和生理特性使其成为将药物输送到靶组织的有效载体。在本研究中,我们试图对磁性纳米颗粒的合成和天然聚合物对颗粒(黏液对颗粒)的包覆作为一种生物相容性、无毒的口服聚合物剂,在纳米结构核磁铁矿和壳黏液对颗粒上最大负载环丙沙星抗生素等课题进行一般的研究,研究不同参数和制备条件对样品的结构、物理化学、磁性、考察了pH对磁性纳米颗粒吸附环丙沙星的影响,以及pH对颗粒黏液吸附环丙沙星和药物释放的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of the Magnetic Nanocomposites with Natural Polymer Coating From the Perspective of the Targeted Drug Delivery
Recent research on the resistance of pathogenic bacteria to existing antibiotics has shown the rapid spread of this problem and has raised concerns in scientific circles and international organizations. The development of new antibiotics is still slow in the face of growing needs. In addition, the overuse of antibiotics in developing countries has exacerbated the problem. Therefore, the development of new and multidimensional strategies is necessary to address this global problem. One of the solutions that has been considered by researchers in recent years is the development of targeted drug delivery systems based on magnetic nanoparticles. Unique magnetic properties the physicochemical and physiological properties of magnetic nanoparticles have made them useful as carriers for delivering drugs to the target tissue. In this study, we try to provide a general study to some subjects such as synthesis of magnetic nanoparticles and coating of these nanoparticles with natural polymer to grain (mucilage to grain) as a biocompatible, non-toxic and oral polymeric agent for maximum loading of ciprofloxacin antibiotic on nanostructured nuclei Magnetite and shell to mucilage to grain, to study the effect of different parameters and fabrication conditions of samples on the structural, physicochemical, magnetic, colloidal stability and antibacterial properties of samples, and also to investigate the effect of pH on ciprofloxacin adsorption on magnet nanoparticles by mucilage to the grain and release of the drug from these nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信